博弈论经典ppt课件.ppt
《博弈论经典ppt课件.ppt》由会员分享,可在线阅读,更多相关《博弈论经典ppt课件.ppt(341页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、博弈论博弈论在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确参考书目:参考书目:博弈论基础,罗伯特博弈论基础,罗伯特吉本斯,高峰译吉本斯,高峰译 中国社会科学出版社,中国社会科学出版社,19991999年年3 3月月策略策略-博弈论导论,乔尔博弈论导论,乔尔沃森,费方域,赖丹沃森,费方域,赖丹馨译,上海人民出版社,馨译,上海人民出版社,20102010年年1111月月经济博弈论(第二版),谢枳予经济博弈论(第二版),谢枳予 复旦大学出版社,复旦大学出版社,20022002年年1 1月月在整堂课的教学中,刘教师总是让学生带着问题来学习,
2、而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确主要内容主要内容第一章第一章 完全信息静态博弈完全信息静态博弈第二章第二章 完全信息的动态博弈完全信息的动态博弈第三章第三章 非完全信息静态博弈非完全信息静态博弈第四章第四章 非完全信息动态博弈非完全信息动态博弈在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在所有社会,人们经常互动。在所有社会,人们经常互动。互动有时是合作,有时是竞争。互动有时是合作,有时是竞争。在这两种情况下,都可以用一个术语,即在这两种情况下,都可以用一个术语,即相互依相互依赖性赖性来表示一个人的行为对另
3、外一个人的福利造来表示一个人的行为对另外一个人的福利造成的影响。成的影响。相互依赖的情形可称为相互依赖的情形可称为策略环境策略环境。因为人们为了。因为人们为了确定所采取的最优行动,必须考虑他周围的其他确定所采取的最优行动,必须考虑他周围的其他人会怎样选择行动。人会怎样选择行动。博弈就是策略对抗博弈就是策略对抗博弈的定义博弈的定义在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确定义:定义:博弈就是一些个人、队组或其他组织,面对一定博弈就是一些个人、队组或其他组织,面对一定的环境条件,的环境条件,在一定的规则下,同时或先后,一次或在一定的
4、规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。实施,各自取得相应结果的过程。四个核心方面四个核心方面 博弈的参加人博弈的参加人(Player)博弈方博弈方 各博弈方的策略各博弈方的策略(Strategies)或行为或行为(Actions)博弈的次序博弈的次序(Order)博弈方的得益博弈方的得益(Payoffs)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确目前,博弈论被许多来自不同领域的专业人士使用,这些目前,博弈论被许多来自
5、不同领域的专业人士使用,这些领域包括经济学、政治学、法律、生物、国际关系哲学以领域包括经济学、政治学、法律、生物、国际关系哲学以及数学。及数学。事实上,事实上,大多数情形即包含了冲突元素,也包含了合作的大多数情形即包含了冲突元素,也包含了合作的元素元素。我们对博弈的组成要有一个广义的理解。我们对博弈的组成要有一个广义的理解。简而言之,博弈是策略环境的正式描述。因此,博弈论是简而言之,博弈是策略环境的正式描述。因此,博弈论是研究相互依赖情形的正式的方法论。这里,研究相互依赖情形的正式的方法论。这里,“正式正式”是指是指一种以数学化的精确,以及逻辑上的一致见长的结构。一种以数学化的精确,以及逻辑上
6、的一致见长的结构。利用正确的理论工具,我们可以研究各种情况下的行为,利用正确的理论工具,我们可以研究各种情况下的行为,从而更好地理解经济中的相互作用。从而更好地理解经济中的相互作用。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确静态博弈:静态博弈:所有博弈方同时或可看作同时选择策略所有博弈方同时或可看作同时选择策略的博弈的博弈 石头剪刀布、猜硬币、古诺模型石头剪刀布、猜硬币、古诺模型动态博弈:动态博弈:各博弈方的选择和行动有先后次序且后各博弈方的选择和行动有先后次序且后选择、后行动的博弈方在自己选择、行动之前可以选择、后行动的博弈方
7、在自己选择、行动之前可以看到其他博弈方的选择和行动看到其他博弈方的选择和行动 弈棋、市场进入、斯坦博格型市场结构弈棋、市场进入、斯坦博格型市场结构在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确完全信息博弈:完全信息博弈:各博弈方都完全了解所有博弈方各各博弈方都完全了解所有博弈方各种情况下的得益种情况下的得益不完全信息博弈:不完全信息博弈:至少部分博弈方不完全了解其他至少部分博弈方不完全了解其他博弈方得益的情况的博弈,也称为博弈方得益的情况的博弈,也称为“不对称信息博不对称信息博弈弈”完美信息博弈:完美信息博弈:每个轮到行动的博弈方对
8、博弈的进每个轮到行动的博弈方对博弈的进程完全了解的博弈程完全了解的博弈不完美信息博弈:不完美信息博弈:至少某些博弈方在轮到行动时不至少某些博弈方在轮到行动时不完全了解此前全部博弈的进程的博弈完全了解此前全部博弈的进程的博弈在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确约翰约翰福布斯福布斯纳什纳什(John Forbes Nash Jr.,1950,(John Forbes Nash Jr.,1950,1951)1951)利用不动点定理证明了均衡点的存在,为博弈论利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。的一
9、般化奠定了坚实的基础。19941994年年约翰约翰福布斯福布斯纳什纳什、约翰约翰C C海萨尼海萨尼以及以及莱因哈德莱因哈德泽尔腾泽尔腾,三人,三人同时因为他们对博弈论的研究,所作出的突出贡献,同时因为他们对博弈论的研究,所作出的突出贡献,而获得诺贝尔经济学奖。而获得诺贝尔经济学奖。John HarsanyJohn NashLeihaden Selten在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确三位大师主要的贡献三位大师主要的贡献19501950年和年和19511951年纳什的两篇关于非合作博弈论的重要论年纳什的两篇关于非合作博弈
10、论的重要论文,证明了非合作博弈及其均衡解,并证明了文,证明了非合作博弈及其均衡解,并证明了均衡解的均衡解的存在性存在性,即著名的纳什均衡。从而揭示了博弈均衡与经,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。济均衡的内在联系。泽泽尔尔腾腾(19651965)将将纳纳什什均均衡衡概概念念引引入入了了动动态态分分析析,提提出出了了“精炼纳什均衡精炼纳什均衡”概念。概念。海海萨萨尼尼发发展展了了刻刻画画不不完完全全信信息息静静态态博博弈弈的的“贝贝叶叶斯斯纳纳什什均衡均衡”(1967196719681968)。)。泽泽尔尔腾腾和和海海萨萨尼尼进进一一步步将将纳纳什什均均衡衡动动态态化化,
11、加加入入了了接接近近实实际际的的不不完完全全信信息息条条件件。他他们们的的工工作作为为后后人人继继续续发发展展博博弈论,提供了基本思路和模型弈论,提供了基本思路和模型 。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第一章第一章 完全信息静态博弈完全信息静态博弈1.1 基本理论基本理论:博弈的标准式和纳什均衡博弈的标准式和纳什均衡1.2 应用举例应用举例1.3 混合策略和均衡的存在混合策略和均衡的存在在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确1.1 基本理论基本理论:
12、博弈的标准式和纳什均衡博弈的标准式和纳什均衡例例1 儿童游戏:儿童游戏:“石头、剪刀、布石头、剪刀、布”。参与人参与人:1,2。策略空间策略空间:S1=S2=石头、剪刀、布石头、剪刀、布收益收益:两人出手的函数:两人出手的函数u1(石石头头,石石头头)=0,u1(石石头头,剪剪刀刀)=1,u1(石头,布石头,布)=-1u2(石石头头,石石头头)=0,u2(石石头头,剪剪刀刀)=-1,u2(石头,布石头,布)=1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确博弈的标准式表示博弈的标准式表示(normal-form representa
13、tion)(1)参与人参与人(player).n 个参与人:个参与人:1,2,i,n(2)策略策略(strategy).一个参与人的策略是他采取的一个行动。一个参与人的策略是他采取的一个行动。参与人参与人 i 的策略:的策略:si 参与人参与人 i 的策略空间的策略空间:Si 策略的一个组合策略的一个组合:s=s1,s2,sn 简化表示:简化表示:s-i=s1,,s i-1,s i+1,sn(3)收益收益(payoff).参与人参与人 i 的收益:的收益:ui=ui(s1,s2,sn)n 个参与人博弈的标准形式表示个参与人博弈的标准形式表示:G=S1,S2,Sn;u1,u2,un在整堂课的教学
14、中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确博弈标准式特例:博弈标准式特例:u1(s11,s21),u2(s11,s21)u1(s11,s22),u2(s11,s22)u1(s12,s21),u2(s12,s21)u1(s12,s22),u2(s12,s22)u1(s13,s21),u2(s13,s21)u1(s13,s22),u2(s13,s22)s11 s12 s13参与人参与人1参与人参与人2s21 s22S1=s11,s12,s13 S2=s21,s22收益表收益表(Payoff):两个参与人,有限个战略的博弈两个参与人,有限个战略的博
15、弈的表示方法的表示方法 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确0,01,-1-1,1-1,10,01,-11,-1-1,10,0石头石头剪刀剪刀布布 石头石头 剪刀剪刀 布布P1P2在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确囚囚徒徒1的的考考虑虑:无无论论对对方方选选沉沉默默还还是是招招认认,自自己己选选“招招认认”好于好于“沉默沉默”。囚徒囚徒2的考虑:的考虑:无论对方选什么,无论对方选什么,“招认招认”好于好于“沉默沉默”。两人的选择两人的选择:(招认招认
16、,招认招认)。-1,-1-9,00,-9-6,-6 囚徒囚徒 2沉默沉默 招认招认沉默沉默 招认招认例例 囚徒困境囚徒困境(The Prisoners Dilemma)囚徒囚徒1占优占优在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确17每一个博弈都是一个你中有我,我中有你的情形,每一个博弈都是一个你中有我,我中有你的情形,不同的博弈参与者可以选择不同的行动,但由于不同的博弈参与者可以选择不同的行动,但由于相互作用,一个博弈参与者的得益不仅取决于自相互作用,一个博弈参与者的得益不仅取决于自己采取的行动,也取决于其他博弈参与者所采取己采
17、取的行动,也取决于其他博弈参与者所采取的行动。的行动。博弈论的精髓在于基于系统思维基础上的理性换博弈论的精髓在于基于系统思维基础上的理性换位思考,位思考,即在选择你的行动时,你应当用他人的即在选择你的行动时,你应当用他人的得益去推测他人的行动,从而选择最有利于自己得益去推测他人的行动,从而选择最有利于自己的行动。的行动。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确鹰鸽博弈(斗鸡博弈)鹰鸽博弈(斗鸡博弈)参与人:鹰和鸽参与人:鹰和鸽策略:保持原方向和转向策略:保持原方向和转向偏好:如果他们都保持原方向,就会撞车。如偏好:如果他们都保
18、持原方向,就会撞车。如果都转向,就都保住了面子。如果只有对方转果都转向,就都保住了面子。如果只有对方转向,就会被称为硬汉。向,就会被称为硬汉。保持保持 转向转向 保持保持 0,0 3,1转向转向 1,32,2鸽鸽鹰鹰在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确公共财产的悲剧公共财产的悲剧12少吃少吃 多吃多吃 少吃少吃 2,20,3多吃多吃 3,01,1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确智猪博弈智猪博弈12按下按下 不按不按 按下按下 4,2 2,3不按不按
19、 6,-10,0小猪小猪大大猪猪在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确定定 义义:si 是是 si 的的 严严 格格 劣劣 势势 战战 略略(strictly dominated),如果),如果:ui(si,s-i)ui(si,s-i)“沉默沉默”是是“招认招认”的严格劣战略的严格劣战略-1,-1-9,00,-9-6,-6 囚徒囚徒 2沉默沉默 招认招认沉默沉默 招认招认囚徒囚徒1理性的参与人不会理性的参与人不会选择严格劣策略选择严格劣策略在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深
20、,所提出的问题也很明确公共财产的悲剧公共财产的悲剧12少吃少吃 多吃多吃 少吃少吃 2,20,3多吃多吃 3,01,1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确重复剔除严格劣策略重复剔除严格劣策略1,01,20,10,30,12,0上下参与人2左中右参与人11,01,20,30,1上下参与人2左中参与人1博弈结果(上,中)博弈结果(上,中)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确两人都没有严格劣策略两人都没有严格劣策略保持保持 转向转向 保持保持 0,0 3,1
21、转向转向 1,32,2鸽鸽鹰鹰12按下按下 不按不按 按下按下 4,2 2,3不按不按 6,-10,0小猪小猪大大猪猪在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确定定 义义:s*=(s1*,sn*)是是 一一 个个 纳纳 什什 均均 衡衡(Nash equilibrium),如果对如果对 i,ui(si*,s i*)ui(si,s i*)纳什均衡为如下最大化问题的解纳什均衡为如下最大化问题的解 ui=ui(s1*,si,sn*)给定你的策略,我的策略是最好的策略给定你的策略,我的策略是最好的策略给定我的策略,你的策略也是最好的策略
22、给定我的策略,你的策略也是最好的策略因此没有一个参与人会轻率地偏离这个策略组合而使因此没有一个参与人会轻率地偏离这个策略组合而使 自己蒙受损失自己蒙受损失在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确纳什均衡特例:纳什均衡特例:u1(s11,s21),u2(s11,s21)u1(s11,s22),u2(s11,s22)u1(s12,s21),u2(s12,s21)u1(s12,s22),u2(s12,s22)u1(s13,s21),u2(s13,s21)u1(s13,s22),u2(s13,s22)s11 s12 s13参与人参与人
23、1 1参与人参与人2 2s21 s22(s11*,s21*)是纳什均衡,如果是纳什均衡,如果 u1(s11*,s21*)u1(s12,s21*)u1(s11*,s21*)u1(s13,s21*)u2(s11*,s21*)u2(s11*,s22).在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确寻找纳什均衡的方法之一:划线法寻找纳什均衡的方法之一:划线法-1,-1-9,00,-9-6,-6 囚徒囚徒 2 沉默沉默 招认招认沉默沉默 招认招认囚徒囚徒1-6,-6没有哪个博弈方有偏离这个预测结果的愿望没有哪个博弈方有偏离这个预测结果的愿望第
24、一类决策矛盾:强第一类决策矛盾:强烈的个人动机将导致烈的个人动机将导致集体的损失集体的损失在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确对于策略组合对于策略组合S和和S,如果所有的参与人相对于,如果所有的参与人相对于S都更偏好于都更偏好于采取采取S,而且至少对一个参与人来说是严格偏好的,我们就说,而且至少对一个参与人来说是严格偏好的,我们就说S比比S更有效率更有效率。用数学来表示,如果。用数学来表示,如果ui(S)ui(S)对每个对每个参与人参与人i都成立,并且不等式至少对一个参与人是严格成立的,都成立,并且不等式至少对一个参与人是
25、严格成立的,那么那么S比比S更有效率更有效率。-1,-1-9,00,-9-6,-6 囚徒囚徒 2 沉默沉默 招认招认沉默沉默 招认招认囚徒囚徒1(沉默,沉默)比(招认,招认)更有效率(沉默,沉默)比(招认,招认)更有效率在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确如果不存在其他更有效率的策略组合,我们就称这个策略组如果不存在其他更有效率的策略组合,我们就称这个策略组合合S是有效的是有效的。用数学来表示,不存在其他策略组合。用数学来表示,不存在其他策略组合S对每个对每个参与人参与人i来说都满足来说都满足ui(S)ui(S),同时对某
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 博弈论 经典 ppt 课件
限制150内