材料的热学性能ppt课件.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《材料的热学性能ppt课件.pptx》由会员分享,可在线阅读,更多相关《材料的热学性能ppt课件.pptx(193页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第第八八章章 材料的热学材料的热学性能性能(Thermology properties of materials)1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2什么是热学性能?你知道哪些?什么是热学性能?你知道哪些?2在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确定义:定义:由于材料及其制品都是在一定的温度环境由于材料及其制品都是在一定的温度环境下使用的,在使用
2、过程中,将对不同的温度做出下使用的,在使用过程中,将对不同的温度做出反映,表现出不同的热物理性能,这些热物理性反映,表现出不同的热物理性能,这些热物理性能称为材料的热学性能。能称为材料的热学性能。3在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确材料热性能研究的意义材料热性能研究的意义在在空间科学技术中的应用空间科学技术中的应用在在能源科学技术中的应用能源科学技术中的应用在在电子技术和计算机技术中的应用电子技术和计算机技术中的应用4在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很
3、明确1.1.热膨胀的利用热膨胀的利用自控调温剂自控调温剂 温度控制阀温度控制阀 热敏蜡热敏蜡 52.2.热膨胀的避免热膨胀的避免石英陶瓷石英陶瓷快速模具快速模具陶陶瓷瓷阀阀6在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确复合玻璃纤维板(保温材料)复合玻璃纤维板(保温材料)暖通空调领域的早暖通空调领域的早期应用,主要发挥期应用,主要发挥了它作为保温材料了它作为保温材料的热学性能。的热学性能。3.3.保温材料保温材料保温毡保温毡保温材料保温材料硅酸铝制品硅酸铝制品 74.4.热传导材料热传导材料导热绝缘材料导热绝缘材料 热传导胶带热传导
4、胶带 铝合金散热器铝合金散热器 导热油导热油8在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确9热学性能:热容(thermalcontent),热膨胀(thermalexpansion),热传导(heatconductivity),热稳定性(thermalstability)等热的本质是什么热的本质是什么?9在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确10=微观弹性模量(micro-elastic-modulus),m=质点质量(mass),x=质点在x方向上位移(dis
5、placement)。根据牛顿第二定律,简谐振动方程(simpleharmonicvibrationequation)为:热性能的物理本质:晶格热振动(lattice heat vibration)格波:格波:晶格中的所有原子以相同频率振动而形成的波,或某晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波。形成的波。格波格波nn+2n-1n+1n-22/q=格波的特点格波的特点:晶格中原子的振动;晶格中原子的振动;相邻原子间存在固定的位相。相邻原子间存在固定的位相。11在整堂课的教学中,
6、刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确12(动能kineticenergy)i=热量(quantityofheat)即:各质点热运动时动能总和就是该物体的热量。弹性波(格波):包括振动频率低的声频支声频支和振动频率高的光频支光频支。12在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 声频支可以看成是相邻原子具有相同的振动方向。由于两种原子的质量不同,振幅也不同,所以两原子间会有相对运动。光频支可以看成相邻原子振动方向相反,形成一个范围很小,频率很高的振动。1313在整堂课的教学中,
7、刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确如果振动着的质点中包含频率甚低的格波,质点彼此之间的位相差不大,则格波类似于弹性体中的应变波,称为“声频支振动”。格波中频率甚高的振动波,质点彼此之间的位相差很大,邻近质点的运动几乎相反时,频率往往在红外光区,称为“光频支振动”。14在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确15声学波的相邻原子振动方向相同,它描述的是原声学波的相邻原子振动方向相同,它描述的是原胞质心的运动胞质心的运动 。光学波描述的是原胞中原子的。光学波描述的是原胞中原子
8、的相对运动相对运动 。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确168.1 材料材料的热容的热容8.2 材料的热传导材料的热传导8.3 材料的热膨胀材料的热膨胀8.4 材料的热稳定性材料的热稳定性在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确8.1 材料的热容材料的热容(Heat capacity of materials)17在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确18热热容容:材料在温度变化时且无
9、相变及化学反应条件下,物体温度升高1K所需要增加的能量。(J/K)显然,质量不同热容不同,温度不同热容也不同。比热容单位J/(K*g),摩尔热容单位 J/(K*mol)。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确19平均平均热容热容,T2-T1范围愈大,精度愈差。恒压热容恒压热容 恒容热容恒容热容 式中:Q热量,u内能,HP+pV焓。19在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确20由于恒压加热,物体除温度升高外,还要对外界做功,所以根据热力学第二定律可以导出:式
10、中:Vm摩尔容积,体膨胀系数(expansioncoefficient),压缩系数(compressioncoefficient)。20在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2121在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确228.1.1晶态晶态固体热容的经验定律(固体热容的经验定律(experience law)恒压下元素的原子热容恒压下元素的原子热容为为元素元素HBCOFSiPSClCP9.611.37.516.720.915.922.522.520.4
11、元素的热容定律杜隆-珀替定律部分轻元素的原子热容:22在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确普通物理:气体分子的动能普通物理:气体分子的动能m分子分子的质量,的质量,分子分子的平均平动速率,的平均平动速率,k玻耳兹曼玻耳兹曼常数,常数,T绝对温度绝对温度气体气体分子的平均动能只由温度决定分子的平均动能只由温度决定。气体中的能量按自由度。气体中的能量按自由度均分的原则扩展到固体均分的原则扩展到固体平平衡衡状状态态下下,气气体体、液液体体和和固固体体分分子子的的任任何何一一种种运运动动形形式式的每一个自由度的平均动能都是的每一个
12、自由度的平均动能都是kT/2。固体中原子有三个自由度,其平均动能为固体中原子有三个自由度,其平均动能为3kT/223在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确241mol固体中有N个原子,总能量为N=6.0231023/mol阿佛加德罗常数,k=R/N=1.38110-23J/K玻尔兹曼常数,R=8.314J/(kmol),T热力学温度(K)。固体中振动着的原子的动能与势能周期性变化,其平均动能和平均势能相等,所以一个原子平均能量为3kT24在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,
13、所提出的问题也很明确所以固体摩尔热容1819,P.l.Dulong和A.T.Petit提出,杜隆珀替定律。历史作用:修正原子量:锌、银、铅、金、锡、铜、镍、铁、硫等。测定原子量:锂、钠、钾、钙、镁等促进元素周期律的发现。由上式可知,热容是与温度T无关的常数25在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一些元素的室温摩尔热容量实验值一些元素的室温摩尔热容量实验值个别元素不符合杜隆珀替定律个别元素不符合杜隆珀替定律26在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确低温下杜
14、隆珀替定律同样不适用低温下杜隆珀替定律同样不适用27在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确28化合物分子热容等于构成该化合物各元素原子热容之和。理论解释:C=nici。其中,ni化合物中元素i的原子数;ci元素i 的摩尔热容。化合物的热容定律化合物的热容定律柯普定律柯普定律 对于双原子的固体化合物,1mol中的原子数为2N,故摩尔热容为28在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确29杜隆珀替定律在高温时与实验结果很吻合。但在低温时,CV 的实验值并不是一个恒
15、量,下面将要作详细讨论。对于三原子的固态化合物的摩尔热容:其余依此类推。29在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确30普朗克提出振子能量的量子化理论。质点的能量都是以hv 为最小单位.式中,普朗克常数,=角频率。8.1.2 热容的量子理论(quantum theory)1.1.晶格振动振子的平均能量晶格振动振子的平均能量 30在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确能量为能量为的能量量子即声子。的能量量子即声子。按波尔兹曼统计理论,能量为按波尔兹曼统计理论,
16、能量为Ei 的谐振子的的谐振子的数量正比于数量正比于31在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确32将上式中多项式展开各取前几项,化简得:根据麦克斯韦-玻尔兹曼分配定律可推导出,在温度为T时,一个振子的平均能量为:这个公式似这个公式似曾相识?曾相识?32在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确33 在高温时,所以即每个振子单向振动的总能量与经典理论一致。33在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很
17、明确34非常困难(verydifficult)由于1mol固体中有N个原子,每个原子的热振动自由度是3,所以1mol固体的振动可看做3N个振子的合成运动,则1mol固体的平均能量为:34在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确若角频率分布可用函数()表示,则在和+d之间的格波数为()d,固体的平均能量为其中m为最大角频率。具体材料的()计算很复杂,一般用简化的模型处理。35在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2.2.爱因斯坦模型爱因斯坦模型爱因斯坦模型假设
18、:晶体中所有原子都以相同的爱因斯坦模型假设:晶体中所有原子都以相同的角频率角频率 E振动,且各振动相互独立,则一摩尔晶振动,且各振动相互独立,则一摩尔晶体的平均能量体的平均能量其中其中称为爱因斯坦温度,称为爱因斯坦温度,一般为一般为100-300K。36在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确晶格热振动的摩尔热容晶格热振动的摩尔热容37在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确38这个公式似这个公式似曾相识?曾相识?高温时高温时T0很大,很大,E/T1,所以T0
19、则CmV0,与实验相符。40在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确3.3.德拜德拜(Debye)(Debye)热容模型热容模型德拜热容模型假设:考虑了晶体中原子的相互作用,晶体是各向同性连续介质,晶格振动具有从0m的角频率分布,则对具有N个原子的晶体有:其中其中V为晶体体积,为晶体体积,vp为波速。为波速。可证明,对晶体中的三支连续介质弹性波,有:可证明,对晶体中的三支连续介质弹性波,有:41在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确将将()代入积分式,得:代
20、入积分式,得:所以晶体的平均能量所以晶体的平均能量令令为德拜温度,为德拜温度,42在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确则有则有43在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确当N=N0,得摩尔热容高温时T0很大,D/T3R(电子的贡献)电子的贡献)59在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2.2.合金的热容合金的热容固溶体或化合物的热容固溶体或化合物的热容服从奈曼柯普定律服从奈曼柯普定律C=
21、pC1+qC2对多相合金和复合材料,合金的热容C=giCip和q:组成原子的百分数;C1和C2为其原子热容原因是原子在合金中的热振动能几乎与在单质中相同。但上述规律在低温下不适用对多元固溶体或化合物,合金的热容C=niCi其中ni和Ci为第i组元的原子分数和原子热容。其中gi和Ci分别是第i相的重量分数和比热容。60在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确几种陶瓷的热容温度曲线几种陶瓷的热容温度曲线陶瓷多为离子晶体,符合德拜模型:陶瓷多为离子晶体,符合德拜模型:达到达到3R,因,因 D不同达到不同达到3R的温度略有不同。的温度
22、略有不同。3.3.陶瓷的热容陶瓷的热容61在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确8.1.4 热分析法热分析法(Thermoanalysis methods)62在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一级相变有相变潜热,二级相变有热容变化。分析焓变确定热容和相变潜热,是研究相变的有效方法。传统方法:量热计法、萨克斯法和史密斯法。63在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(1)差热分析DTA
23、(DifferentialThermalAnalysis)(2)差示扫描量热法DSC(DifferentialScanningCalorimetry)(3)热重法TG(ThermalGravimetry)(4)热膨胀分析(见热膨胀部分)64依据材料的温度、质量等参数的热效应与材料组织结构存在对应关系。常用的有以下几种64在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确A2温温度度有有明明显显的的热热容容变变化化,是是二二级级相相变(磁性转变)变(磁性转变)应应用用:金金属属、陶陶瓷瓷、高高分分子子材材料料相相变变优优点点:需需要要的的
24、样样品品少少且且制制备备容容易易,可可对对热热学学参参数数进进行准确的定量。行准确的定量。65在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确热分析是在程序控制温度下测量物质的物理性热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。质与温度关系的一类技术。661.1.运输性质变化运输性质变化2.2.热力学性质(比热等)变化热力学性质(比热等)变化3.3.溶解(固相转变为液相)溶解(固相转变为液相)4.4.凝固(液相转变为固相)凝固(液相转变为固相)5.5.升华(固态直接转变为气态)升华(固态直接转变为气态)6.6.凝华(
25、气态直接转变为固态)凝华(气态直接转变为固态)7.7.相变相变8.8.热释电效应热释电效应9.9.热分解和热裂解热分解和热裂解10.10.热稳定热稳定热物理性质变化热物理性质变化66在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确物理性质物理性质热分析技术名称热分析技术名称缩缩 写写质质 量量热重法热重法热重法热重法TG等压质量变化测定等压质量变化测定逸出气检测逸出气检测逸出气分析逸出气分析EGD放射热分析放射热分析EGA热微粒分析热微粒分析温温 度度升温曲线测定升温曲线测定差热分析差热分析差热分析差热分析DTA热热 量量差示扫描量热
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 热学 性能 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内