人教版九年级数学上册ppt课件22二次函数复习课件.ppt
《人教版九年级数学上册ppt课件22二次函数复习课件.ppt》由会员分享,可在线阅读,更多相关《人教版九年级数学上册ppt课件22二次函数复习课件.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二二 次次 函函 数数 复复 习习最新人教版九年级上册数学最新人教版九年级上册数学一、二次函数概念一、二次函数概念形如形如y=ax2+bx+c(a,b,c是常数,是常数,a0)的函的函数叫做二次函数数叫做二次函数其中二次项为其中二次项为ax2,一次项为,一次项为bx,常数项,常数项c二次项的系数为二次项的系数为a,一次项的系数为,一次项的系数为b,常数项,常数项c练习:练习:1、y=-x,y=2x-2/x,y=100-5 x,y=3 x-2x+5,其其中是二次函数的有中是二次函数的有_个。个。2.当当m_时时,函数函数y=(m+1)-2+1 是二次函是二次函数?数?资金是运动的价值,资金的价值
2、是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二二.二次函数图象二次函数图象y=ax2y=ax2y=a(x+m)2y=a(x+m)2y=a(x+m)2+ky=a(x+m)2+ky=ax2+bx+y=ax2+bx+c cy=ax2+ky=ax2+k顶点式顶点式一般式一般式配方配方平移平移直线直线x=0 x=0直线直线x=-mx=-m直线直线x=-mx=-m(0,0)(0,0)(-(-m,0)m,0)(-(-m,k)m,k)a0a0当当x=0,yx=0,y最小最小=0=0a0a0当当x=-x=-m,ym,y最小最小=0=0a0a0当当x=-x=-m
3、,ym,y最小最小=k=ka0a0,x-m,yx-m,y随随x x增大而减小增大而减小 x-x-m,ym,y随随x x增大而增大增大而增大a0a0,x-b/2a,yx-b/2a,y随随x x增大而减小增大而减小 x-b/2a,yx-b/2a,y随随x x增增大而增大大而增大2.2.二次函数图象的画法二次函数图象的画法顶点坐标顶点坐标与与X轴的交点坐标轴的交点坐标与与Y轴的交点坐标及它轴的交点坐标及它关于对称轴的对称点关于对称轴的对称点(,)(x1,0)(x2,0)(0,c)(,c)(,)x1x2Oxyc(,c)对称轴直线对称轴直线x=x=(1)y=2(x+2)2是由是由 向向 平移平移 个单位
4、得到个单位得到(2)y=-2x2-2是由是由 向向 平移平移 个单位得到个单位得到(3)y=-2(x-2)2+3是由是由 向向 平移平移 个单位个单位,再向,再向 平移平移 个单位得到个单位得到(4)y=2x2+4x-5是由是由 向向 平移平移 个单位,再个单位,再向向 平移平移 个单位得到个单位得到(5)y=2x2向左平移向左平移2个单位,再向下平移个单位,再向下平移3个单位得到个单位得到函数解析式是函数解析式是 。y=2(x+2)2-3y=2x2左左2y=-2x2下下2y=-2x2右右2上上3y=2x2左左1下下7(6 6)已知二次函数)已知二次函数y=x2-4x-5 y=x2-4x-5
5、,求下列问题求下列问题y=-2(x+1)2-8开口方向开口方向对称轴对称轴顶点坐标顶点坐标最值最值怎样平移怎样平移x x在什么范围,在什么范围,y y随随x x增大而增大增大而增大与坐标轴的交点坐标与坐标轴的交点坐标与与x轴的交点坐标为轴的交点坐标为A,B,与与y轴的交点为轴的交点为C,则则SABC=.在抛物线上是否存在点在抛物线上是否存在点P,使得使得SABP是是ABC面面积的积的2倍倍,若存在,请求出点若存在,请求出点P的坐标,若不存在,请的坐标,若不存在,请说明理由说明理由当当x x为何值时,为何值时,y0y0(7 7)已知二次函数)已知二次函数y=x2+bx+cy=x2+bx+c的顶点
6、坐标(的顶点坐标(1 1,-2-2),求),求b b,c c的值的值(8 8)已知二次函数)已知二次函数y=x2+4x+cy=x2+4x+c的顶点坐标在的顶点坐标在x x轴上,轴上,求求c c的值的值(9 9)已知二次函数)已知二次函数y=x2+4x+cy=x2+4x+c的顶点坐标在直线的顶点坐标在直线y=2x+1y=2x+1上,求上,求c c的值的值2 2、已知抛物线顶点坐标(、已知抛物线顶点坐标(m,km,k),通常),通常设抛物线解析式为设抛物线解析式为_3 3、已知抛物线与、已知抛物线与x x 轴的两个交点轴的两个交点(x1,0)(x1,0)、(x2,0),(x2,0),通常设解析式为
7、通常设解析式为_1 1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=ax2+bx+c(a0)y=ax2+bx+c(a0)y=a(x+m)2+k(a0)y=a(x+m)2+k(a0)y=a(x-x1)(x-x2)(a0)y=a(x-x1)(x-x2)(a0)如何求抛物线解析式常用的三种方法如何求抛物线解析式常用的三种方法一般式一般式顶点式顶点式交点式或两根式交点式或两根式4.4.公式法公式法1.1.已知一个二次函数的图象经过点已知一个二次函数的图象经过点(0 0,0 0),(),(1 1,33),(),(2 2,88)。)。如何求下列条件下的二次函数的解析式如何求
8、下列条件下的二次函数的解析式:3.3.已知二次函数的图象的对称轴是直线已知二次函数的图象的对称轴是直线x=3,x=3,并且经过点并且经过点(6,0),(6,0),和和(2,12)(2,12)2.2.已知二次函数的图象的顶点坐标为已知二次函数的图象的顶点坐标为(2 2,3 3),且图象过点(),且图象过点(3 3,2 2)。)。4.4.矩形的周长为矩形的周长为6060,长为,长为x x,面积为,面积为y y,则,则y y关于关于x x的函数关系式的函数关系式 。如何判别如何判别a a、b b、c c、b2-4acb2-4ac,2a+b2a+b,a+b+ca+b+c的符的符号号(1)a的符号:的符
9、号:由抛物线的开口方向确定由抛物线的开口方向确定开口向上开口向上a0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0A abc0B a0,b2-4ac0,b2-4acb ab 0 0),今在四边上分别选取),今在四边上分别选取E E、F F、G G、H H四点,且四点,且AE=AH=CF=CG=xAE=AH=CF=CG=x,建一个花园,如何设计,可使,建一个花园,如何设计,可使花园面积最大?花园面积最大?DCABGHFEab b4.4.(20142014新疆生产建设兵团改编)新疆生产建设兵团改编)如图,在一面靠
10、墙的空地上用如图,在一面靠墙的空地上用长为长为2424米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽圃的宽ABAB为为x x米,面积为米,面积为S S平方米。平方米。(1)(1)求求S S与与x x的函数关系式及自变量的取值范围;的函数关系式及自变量的取值范围;(2)(2)当当x x取何值时所围成的花圃面积最大,最大值是多少?取何值时所围成的花圃面积最大,最大值是多少?(3)(3)若墙的最大可用长度为若墙的最大可用长度为8 8米,则求围成花圃的最大面积。米,则求围成花圃的最大面积。ABCD解:解:(1)AB(1)AB为为x x米、篱笆长为
11、米、篱笆长为2424米米 花圃宽为(花圃宽为(24244x4x)米)米 (3)墙的可用长度为墙的可用长度为8米米(2)当x 时,S最大值 36(平方米)S Sx x(24244x4x)4x24x224 x 24 x (0 x60 x6)0244x 8 4x6当当x4m时,时,S最大值最大值32 平方米平方米5.5.某企业投资某企业投资100100万元引进一条产品加工生产线,若不万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利计维修、保养费用,预计投产后每年可创利3333万。该万。该生产线投产后,从第生产线投产后,从第1 1年到第年到第x x年的维修、保养费用累年的维修、保
12、养费用累计为计为y(y(万元万元),且,且y=ax2+bx,y=ax2+bx,若第若第1 1年的维修、保养年的维修、保养 费用为费用为2 2万元,到第万元,到第2 2年为年为6 6万元。万元。(1 1)求)求y y的解析式;的解析式;(2 2)投产后,这个企业在第几年就能收回投资?)投产后,这个企业在第几年就能收回投资?解解:(1)由题意,)由题意,x=1时,时,y=2;x=2时,时,y=2+4=6,分别代入分别代入y=ax2+bx,得得a+b=2,4a+2b=6,解得解得:a=1,b=1,y=x2+x.(2)设)设g33x-100-x2-x,则则g=-x2+32x-100=-(x-16)2+
13、156.由于当由于当1x16时,时,g随随x的增大而增大,故当的增大而增大,故当x=4时,即第时,即第4年可年可收回投资。收回投资。6.6.某商场将进价某商场将进价某商场将进价某商场将进价4040元一个的某种商品按元一个的某种商品按元一个的某种商品按元一个的某种商品按5050元一个售出元一个售出元一个售出元一个售出时,能卖出时,能卖出时,能卖出时,能卖出500500个,已知这种商品每个涨价一元,销量个,已知这种商品每个涨价一元,销量个,已知这种商品每个涨价一元,销量个,已知这种商品每个涨价一元,销量减少减少减少减少1010个,为赚得最大利润,售价定为多少?最大利个,为赚得最大利润,售价定为多少
14、?最大利个,为赚得最大利润,售价定为多少?最大利个,为赚得最大利润,售价定为多少?最大利润是多少?润是多少?润是多少?润是多少?分析:利润分析:利润分析:利润分析:利润=(每件商品所获利润)(每件商品所获利润)(每件商品所获利润)(每件商品所获利润)(销售件数)(销售件数)(销售件数)(销售件数)设每个涨价设每个涨价x x元,元,那么那么(3)销售量可以表示为)销售量可以表示为(1)销售价可以表示为)销售价可以表示为(50+x)元()元(x 0,且,且为整数)为整数)(500-10 x)(500-10 x)个个个个(2)一个商品所获利润可以表示为)一个商品所获利润可以表示为(50+x-40)元
15、)元(4)共获利润可以表示为)共获利润可以表示为(50+x-40)(500-10 x)(50+x-40)(500-10 x)元元元元资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值7.7.如图,已知直线如图,已知直线 y=-y=-x+3x+3与与X X轴、轴、y y轴分别交于点轴分别交于点B B、C C,抛物线,抛物线y=-x2+bx+cy=-x2+bx+c经过点经过点B B、C C,点,点A A是抛物线是抛物线与与x x轴的另一个交点。轴的另一个交点。(1)求抛物线的解析式;)求抛物线的解析式;解:令解:令y=0,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 ppt 课件 22 二次 函数 复习
限制150内