线性空间和欧氏空间幻灯片.ppt
《线性空间和欧氏空间幻灯片.ppt》由会员分享,可在线阅读,更多相关《线性空间和欧氏空间幻灯片.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性空间和欧氏空间第1页,共34页,编辑于2022年,星期一第四章第四章 线性空间和欧氏空间线性空间和欧氏空间 4.1 向量空间向量空间 Rn及其子空间及其子空间 一一.向量空间向量空间基和维数基和维数 1.n维实维实(列列)向量的全体向量的全体 Rn=x1,x2,xnT|R关于向量关于向量(即列矩阵即列矩阵)的加法和数乘运算的加法和数乘运算 满足如下满足如下8条基本性质条基本性质:关于加法关于加法:(1)交换律交换律交换律交换律;(2)结合律结合律结合律结合律;(3);(4);(4)关于数乘关于数乘:(5)1:(5)1 =;(6)k(l l)=)=(kl);(7)(k k+l l)=k k
2、+l l ;(8)k(+)=k k +k k .第2页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 2.设设V是是Rn的非空子集的非空子集,且对向量的加法及数且对向量的加法及数 乘封闭乘封闭,即即 ,V,k R,有有+V,k V 则称则称V是一个是一个(实实)向量空间向量空间.设设V是一个向量空间是一个向量空间,U V,若若U也构成一个也构成一个向量空间向量空间,则称则称U为为V是一个是一个子空间子空间
3、.仅含有零向量仅含有零向量 的集合的集合 关于向量的线性运关于向量的线性运算也构成一个向量空间算也构成一个向量空间,我们称之为我们称之为零空间零空间.Rn和和 称为称为Rn的的平凡子空间平凡子空间.第3页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 3.设设V是一个向量空间是一个向量空间,1,2,r是是V中一中一 线性无关向量组线性无关向量组,并且并且V中任一向量都能由中任一向量都能由 1,2,r 线性
4、表示线性表示,则称则称(有序有序)向量组向量组 1,2,r 是向量空间是向量空间V的一组的一组基基.r称为称为V的的维数维数.记为维记为维(V)或或dim(V).零空间没有基零空间没有基,规定规定dim =0.由定义由定义,对对 V,唯一唯一的一组有序实数的一组有序实数 k1,k2,kr使得使得 =k1 1+k2 2+kr r.我们把我们把r维向量维向量k1,k2,krT 称为称为 在在 1,2,r 这组基下的这组基下的坐标坐标.第4页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间
5、向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 例例1.Rn的基本向量组的基本向量组e1=1000,e2=0100,en=0001构成构成Rn的一组基的一组基,Rn中的任一向量中的任一向量 都能都能 由这组基线性表示由这组基线性表示.且且 在这组基下的坐标就是在这组基下的坐标就是 本身本身.这组基称为这组基称为Rn的自然基的自然基.第5页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间
6、及其子空间 例例2.设设A Rm n,b Rm,b ,r(A,b)=r(A)=r,KA=x|Ax=,x Rn,SB=x|Ax=b,x Rn.其中其中KA是向量空间是向量空间,称为齐次线性方程组称为齐次线性方程组 Ax=的的解空间解空间,Ax=的一个基础解系的一个基础解系就是就是KA的一组基的一组基,因此因此dim(KA)=n r.但但SB不是向量空间不是向量空间.事实上事实上,SB中不含中不含.在在R3中中,过原点的平面是过原点的平面是R3的的2维子空间维子空间,过原点的直线是过原点的直线是R3的的1维子空间维子空间,而不经而不经过原点的直线与平面都不是向量空间过原点的直线与平面都不是向量空间
7、.第6页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 4.设设 1,2,s Rn,用用L(1,2,s)表示表示 1,2,s的一切线性组合所成的集合的一切线性组合所成的集合,即即 L(1,2,s)=k1 1+k2 2+ks s|k1,k2,ks R则则L(1,2,s)是是(包含包含 1,2,s的的 向量空间中最小的向量空间中最小的)一个向量空间一个向量空间,我们称我们称之为之为由由 1,2,s生成的子空间
8、生成的子空间.而而 1,2,s称为称为L(1,2,s)生成元生成元.L(1,2,s)的基可以取为的基可以取为 1,2,s 的任一极大无关组的任一极大无关组.第7页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 特别地特别地,设矩阵设矩阵A Rn s,A1,A2,As依次为依次为A s个列向量个列向量.则称则称L(A1,A2,As)为为矩阵矩阵A的列的列空间空间.dim(L(A1,A2,As)=秩秩(A).
9、因而因而dim(L(1,2,s)=秩秩 1,2,s.求求L(A1,A2,A3,A4)的一组基和维数的一组基和维数.例例3.设设A=A1,A2,A3,A4=1 0 1 2 1 0 1 1 1 1 1 1,第8页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 1 0 1 2 1 0 1 1 1 1 1 1 解解:初等初等 行行变换变换 可见可见dim L(A1,A2,A3,A4)=2,A1,A2是是L(A1,
10、A2,A3,A4)的一组基的一组基.注注:此外此外A1,A3也也是是L(A1,A2,A3,A4)的一组基的一组基.还有还有A1,A4.1 0 0 2 1 0 1 1 0 1 1 0 事实上事实上,对于这个例子对于这个例子,除了除了A3,A4以外以外,A1,A2,A3,A4中任意两个向量都构成中任意两个向量都构成L(A1,A2,A3,A4)的一组基的一组基.第9页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空
11、间 二二.Rn上的坐标变换上的坐标变换 1.两组基之间的关系两组基之间的关系 设设 1,2,n及及 1,2,n都是都是Rn的的 基基,j在在 1,2,n下的坐标为下的坐标为 c1j,c2j,cnjT,j=1,2,n.j在在 1,2,n下的坐标为下的坐标为 d1j,d2j,dnjT,j=1,2,n.记记A=1,2,n,B=1,2,n,C=cij,D=dij,则则A,B可逆可逆,且且B=AC,A=BD.第10页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R
12、Rn n及其子空间及其子空间及其子空间及其子空间 A,B可逆可逆,且且B=AC,A=BD.由此可得由此可得A=BD=ACD,因而因而CD=I.我们称我们称C为从基为从基 1,2,n到基到基 1,2,n的的过渡矩阵过渡矩阵.易见易见C=A 1B,D=C 1=B 1A.特别地特别地,从自然基从自然基e1,e2,en到基到基 1,2,n 的过渡矩阵为的过渡矩阵为I 1A=A.从基从基 1,2,n到自然基到自然基e1,e2,en的过渡的过渡 矩阵为矩阵为A 1I=A 1.第11页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间
13、和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 2.同一个向量在两组级下的坐标之间的关系同一个向量在两组级下的坐标之间的关系 设设 在基在基 1,2,n下的坐标为下的坐标为x,在基在基 1,2,n下的坐标为下的坐标为y,即即 =Ax=By,因此因此 y=Dx,x=Cy 上述公式称为上述公式称为坐标变换公式坐标变换公式.特别地特别地,向量向量 =x1,x2,xnT 在基在基 1,2,n的坐标为的坐标为A 1 .第12页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏
14、空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 三三.Rn上的线性变换上的线性变换 1.线性映射线性映射 设映射设映射f:RnRm保持线性运算保持线性运算,即满足即满足 ,Rn,k1,k2 R,f(k1 +k2)=k1 f()+k2 f()或者或者,与之等价地与之等价地,保持加法保持加法和和数乘数乘,即即 则称则称f为一个为一个线性映射线性映射.从从Rn到到Rn自身的自身的 线性变换称为线性变换称为Rn的线性变换的线性变换.,Rn,k R,f(+)=f()+f(),f(k)=kf()第13页,共34页,编辑于202
15、2年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 2.线性映射的矩阵线性映射的矩阵 设设A Rm n,则可以定义则可以定义f:RnRm如下如下:f()=A,Rn.可以直接验证可以直接验证f为线性映射为线性映射.反之反之,给定线性映射给定线性映射f:RnRm,取取Rn的自然的自然基基e1,e2,en,Rm的自然基的自然基 1,2,m.设设f(e1),f(e2),f(en)在在 1,2,m下的矩阵下的矩阵 为为A,即即 f(e1),f
16、(e2),f(en)=1,2,mA,则则A Rm n,且且f()=A,Rn.第14页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 这就是说每个矩阵这就是说每个矩阵A Rm n对应于一个线性映对应于一个线性映 射射 f:RnRm;反之反之,每个线性映射每个线性映射 f:RnRm都都对应于一个矩阵对应于一个矩阵A Rm n.特别地特别地,每个方阵每个方阵A Rn n对应于对应于Rn的的一一个线性变换个线性变
17、换 f:RnRn;反之反之,Rn的的每个线性每个线性变换变换都都对应于一个对应于一个方方阵阵A Rn n.此时此时,线性变换线性变换f:RnRn(作为映射作为映射)可逆可逆 A可逆可逆.第15页,共34页,编辑于2022年,星期一第四章第四章第四章第四章 线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间线性空间和欧氏空间 4.1 4.1 向量空间向量空间向量空间向量空间 R Rn n及其子空间及其子空间及其子空间及其子空间 3.设设f:RnRm为线性映射为线性映射,Imf=y=f(x)|x Rn,Kerf=x Rn|f(x)=.则则Imf和和Kerf分别为分别为Rn和和Rm的子空间的子空
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 空间 幻灯片
限制150内