模式识别第一章精选PPT.ppt
《模式识别第一章精选PPT.ppt》由会员分享,可在线阅读,更多相关《模式识别第一章精选PPT.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、模式识别第一章第1页,此课件共55页哦引 言 第2页,此课件共55页哦与模式识别相关的学科统计学概率论线性代数(矩阵计算)形式语言机器学习人工智能图像处理计算机视觉第3页,此课件共55页哦教学方法着重讲述模式识别的基本概念,基本方法和算法原理。注重理论与实践紧密结合实例教学:通过大量实例讲述如何将所学知识运用到实际应用之中避免引用过多的、繁琐的数学推导。第4页,此课件共55页哦教学目标掌握模式识别的基本概念和方法有效地运用所学知识和方法解决实际问题为研究新的模式识别的理论和方法打下基础 第5页,此课件共55页哦题外话基本:完成课程学习,通过考试,获得学分。提高:能够将所学知识和内容用于课题研究
2、,解决实际问题。飞跃:通过模式识别的学习,改进思维方式,为将来的工作打好基础,终身受益。第6页,此课件共55页哦参考文献R.Duda,P.Hart,D.Stork,Pattern Classification,second edition,2000(有中译本).边肇祺,模式识别(第二版),清华大学出版社,2000。蔡元龙,模式识别,西北电讯工程学院出版社,1986。第7页,此课件共55页哦机构、会议、刊物1973年 IEEE发起了第一次关于模式识别的国际会议“ICPR”(此后两年一次),成立了国际模式识别协会-“IAPR”1977年IEEE成立PAMI委员会,创立IEEE Trans.on P
3、AMI,并支持ICCV,CVPR两个会议 其它刊物Pattern Recognition(PR)Pattern Recognition Letters(PRL)Pattern Analysis and Application(PAA)International Journal of Pattern Recognition and Artificial Intelligence(IJPRAI)第8页,此课件共55页哦第一章 模式识别概论第9页,此课件共55页哦什么是模式(Pattern)?第10页,此课件共55页哦什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同
4、或是否相似,都可以称之为模式。模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。模式的直观特性:可观察性可区分性相似性第11页,此课件共55页哦模式识别的概念模式识别 直观,无所不在,“人以类聚,物以群分”周围物体的认知:桌子、椅子人的识别:张三、李四声音的辨别:汽车、火车,狗叫、人语气味的分辨:炸带鱼、红烧肉人和动物的模式识别能力是极其平常的,但对计算机来说却是非常困难的。第12页,此课件共55页哦模式识别的研究目的:利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观物体相符合。Y=F(X)X的定义域取自特征集Y的值域为类别
5、的标号集F是模式识别的判别方法第13页,此课件共55页哦模式识别简史1929年 G.Tauschek发明阅读机,能够阅读0-9的数字。30年代 Fisher提出统计分类理论,奠定了统计模式识别的基础。50年代 Noam Chemsky 提出形式语言理论傅京荪 提出句法结构模式识别。60年代 L.A.Zadeh提出了模糊集理论,模糊模式识别方法得以发展和应用。80年代以Hopfield网、BP网为代表的神经网络模型导致人工神经元网络复活,并在模式识别得到较广泛的应用。90年代小样本学习理论,支持向量机也受到了很大的重视。第14页,此课件共55页哦模式识别的应用(举例)生物学自动细胞学、染色体特性
6、研究、遗传研究天文学天文望远镜图像分析、自动光谱学经济学股票交易预测、企业行为分析医学心电图分析、脑电图分析、医学图像分析第15页,此课件共55页哦模式识别的应用(举例)工程产品缺陷检测、特征识别、语音识别、自动导航系统、污染分析军事航空摄像分析、雷达和声纳信号检测和分类、自动目标识别安全指纹识别、人脸识别、监视和报警系统第16页,此课件共55页哦模式识别方法模式识别系统的目标:在特征空间和解释空间之间找到一种映射关系,这种映射也称之为假说。特征空间:从模式得到的对分类有用的度量、属性或基元构成的空间。解释空间:将c个类别表示为其中 为所属类别的集合,称为解释空间。第17页,此课件共55页哦假
7、说的两种获得方法监督学习、概念驱动或归纳假说:在特征空间中找到一个与解释空间的结构相对应的假说。在给定模式下假定一个解决方案,任何在训练集中接近目标的假说也都必须在“未知”的样本上得到近似的结果。依靠已知所属类别的的训练样本集,按它们特征向量的分布来确定假说(通常为一个判别函数),在判别函数确定之后能用它对未知的模式进行分类;对分类的模式要有足够的先验知识,通常需要采集足够数量的具有典型性的样本进行训练。第18页,此课件共55页哦假说的两种获得方法(续)非监督学习、数据驱动或演绎假说:在解释空间中找到一个与特征空间的结构相对应的假说。这种方法试图找到一种只以特征空间中的相似关系为基础的有效假说
8、。在没有先验知识的情况下,通常采用聚类分析方法,基于“物以类聚”的观点,用数学方法分析各特征向量之间的距离及分散情况;如果特征向量集聚集若干个群,可按群间距离远近把它们划分成类;这种按各类之间的亲疏程度的划分,若事先能知道应划分成几类,则可获得更好的分类结果。第19页,此课件共55页哦模式分类的主要方法数据聚类统计分类结构模式识别神经网络第20页,此课件共55页哦数据聚类目标:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据集。是一种非监督学习的方法,解决方案是数据驱动的。第21页,此课件共55页哦统计分类基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。特征向量分布
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别 第一章 精选 PPT
限制150内