【企业管理课件】-第十一章 描述统计.ppt
《【企业管理课件】-第十一章 描述统计.ppt》由会员分享,可在线阅读,更多相关《【企业管理课件】-第十一章 描述统计.ppt(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章第十一章 描述统计描述统计概率论是研究随机现象统计规律的学问,它为数理统计奠定了理论 基础。所谓数理统计,是以概率论为基础,通过合理地获取随机现 象的少量数据资料,估计和检验反映随机现象的某种数字特征,或 分析和判断随机现象所具有的统计规律性的学问。数理统计的应用相当广泛,它已成为工业、农业、商业、医药卫生、教育、社会学、经济学、生物学、气象学等各领域必不可少的数学 工具和分析方法,因此又被称为统计技术。描述统计是通过图表或数学方法,对数据资料进行整理、分析,并 对数据的分布状态、数字特征和随机变量之间关系进行估计和描述 的方法。它是统计技术的重要组成部分,并在以后各章的统计推断 技术
2、中被应用。11.1 数据的收集数据的收集 11.2 数字特征描述数字特征描述(估计估计)11.3 分布状态描述分布状态描述频数直方图频数直方图 11.4 排列图、因果分析图、趋势图排列图、因果分析图、趋势图111.1 数据的收集数据的收集 科学研究中,若无定量分析,就不会有明确的概念,也就不易找出科学的规律。质量管理如果不进行定量分析,也就不会有明确的质量概念,就不会有科学的质量管理。因此质量管理是一种以数据为基础的活动。人们必须通过有目的的搜集数据,从中获取有关产品质量或生产状态的正确情报,从而做出正确的判断和决策,更有效地管理生产。一一 数据及其实质数据及其实质 二二 总体、个体、样本、样
3、品总体、个体、样本、样品 三三 数据收集的原则数据收集的原则 四四 数据的分类数据的分类2一一 数据及其实质数据及其实质 数据数据:在质量管理的各项活动中,记录有关科 学试验、质量特征、生产状态及管理现 状得到的数字资料统称为数据。实质实质:收集的数据绝大多数都 既 具 有 随机性 (偶然性)又具有统计规律性。也就是 说它们具有随机现象的某些特征,或者 说是随机变量的一组取值。3二二 总体、个体、样本、样品总体、个体、样本、样品1 总体与个体总体与个体 定义定义:研究对象的全体,称为总体总体或母体母体;组成总体的每个单元称为个体 研究对象的全体,指的是研究对象某 个数量 指 标 的 全部取值,
4、由于一个 数量指标通常就是一个随机变量,因此,总体是指某随机变量的取值的全 体。而其中的每 个 值 都 是 一 个 个 体。例如,工厂生产一批晶体管,共 10000件。其直流放大系数是一个随机变量,10000件产品直流放大系数数 据的全体称为总体,而其中的一个数据则是一个个体。如果要研究的不是一个,而是几个数量指标,如对一批晶体管不仅要研究 其直流放大系数,还有研 究 集电极-发射电极反向电流时,则要分为几个 总体来研究。总体的有限和无限 类 型 随 研究的问题而定,对于上述的一批晶体管而言,总体是有限的;但有时根据研究的需要,我们常把相同条件下的生产的所 有晶体管看成一个总体,显然,此时,它
5、是一个无限总体。2 样本与样品样本与样品3 样本与总体样本与总体42 样本与样品样本与样品 定义定义:从总体中随机抽取的若干个个体的总和称为 样本样本或子样子样;组成样本的每个个体称为样品样品;样本中所有的样品的数目称为样本容量样本容量或子子 样大小样大小,样本容量常用符号n代表 例例:从批量为10,000的一批晶体管中随机抽取20件 进行检查,被抽查的20件产品称为样本,而其 中每一件产品称为样品;样本大小为20。由 于人们通常只获得样本数据,故简称为数据53 样本与总体样本与总体 人们从总体中抽取样本的目的是根据样本数据对总体的数字特征和 分布规律进行推断、估计和检验。自然,由样本推断和估
6、计总体很难做到完全精确和可靠。但是必须 采取措施获得比较精确和具有一定可靠性的推断。其措施涉及两方 面的问题:即抽取样本的方法和统计推断的方法。当样本的抽取满足下列两个条件时,样本将能很好地反映总体的统 计规律性:(1)样本容量n足够大。样本容量越大,推断的结论越准确,可 靠性越高;(2)采用随机抽样,即总体中每个个体被抽到的机会均等,即使 一个个体被抽取后,总体的成分不变。换句话说,每个样品 的抽取都是一次独立、重复试验。至于应采用的统计推断方法将在以后各章讨论6样本与总体的关系样本与总体的关系个体具有随机性总体具有统计规律性总体样本样本随机性样本具有统计规律性条件抽样方法正确:n足够大 随
7、机抽取统计推断方法正确结果:样本的统计规律性在一定程度上反映总体的统计规律性决定7三三 数据收集的原则数据收集的原则 数据的收集是一项重要的基础工作,为了给质量管理工作提供可靠的准确的情报,搜集数据时,必须遵循以下原则 1 随机抽样随机抽样 2 数据的分层数据的分层 3 明确数据收集的目的和方法明确数据收集的目的和方法 4 作好数据记录,保证数据真实、可靠、准确作好数据记录,保证数据真实、可靠、准确81 随机抽样随机抽样 定义定义:是指从总体抽取样品时,使每个个体被抽到的机 会均等以使所抽取的样本数据能够很好地代表总 体的抽样方法。方法方法:鉴于实际情况产品的大小、形状、存取状态等方 面的差异
8、及条件限制,常用的随机抽样方法为:(1)简单随机抽样法:(单纯随机抽样)抽签法(或掷骰子法)随机数表法 (2)分层随机抽样 (3)系统随机抽样 (4)多级随机抽样9随机数表法随机数表法(1)定义定义:用随机数表查出样本号码的方法(2)步骤步骤:随机决定所用数表页码(瞎子点点法或掷骰子法)决定起点(瞎子点点法)查样本号数:N10,查一位数字即可,取到n个样品为止,重复的数字取消 11n100,查两位数字,大于n的以n除之取余数,重复数字去掉 n100,向下取三位,大于n的以n除之取余数,重复数字去掉(3)例例:从批量N=50的产品中抽n=4的样本采用掷骰子 采用掷骰子法确定选随机数表“I”;用瞎
9、子点点法确定起点为11行 第1 列,随机号码为18、18、07、92、45、44取18、7、42、4510分层随机抽样分层随机抽样 定义定义:将总体按产品的某些特征把整批产品划分为若干层 (即小批),即分为层,同一层内的产品质量尽可 能均匀一致,在各层内分别用简单随机抽样法抽取 一定数量的个体组成一个样本的方法 分层按比例随机抽样分层按比例随机抽样:若按各层在整批中所占比例分别在 各层内抽取就称为分层按比例随机 抽样 例例:某批产品批量为N=1600,由A、B、C三条生产线加工 而成,NA=800,NB=640,NC=160。取n=150的样本。解:11系统随机抽样法(间隔随机抽样)系统随机抽
10、样法(间隔随机抽样)定义定义:当批中产品可以按某个次序排列时,给批中 每个 产 品 编号1N,以 整数部分 为 抽样间隔,用简单随机抽样法在1至 之间 随机 抽 取 的 一个整数作为第一个单位产品 号码,每隔 个产品抽取一个,直到抽出 n个样本为止 例例:某工序每天生产200件产品,规定巡检员在一 天中抽取n=10的样本进行检查,试用系统随机 抽样确定抽取的样本号码 解:,第一个样品号码用抽签法确定为13,则被抽取的样品号码为13、33、53、19312多级随机抽样法多级随机抽样法 定义定义:整批产品由许多群组成,每群又分若干组组成,以 前三种方法任一种抽取一定数量的群,该群的单位产 品组成样
11、本,称为整群抽样法或一级随机抽样法,若 在各群中按随机抽样法抽取若干组组成样本,称为二 阶段或二级随机抽样 例例:某产品批N=20000,分为200箱,每箱100个,分为4盒,每盒25个,抽取n=100的样本 解:从200箱中随机抽取1箱,作为样本为整群随机抽样 从200箱中随机抽取4箱,每箱中随机抽取1盒作为样 本称为二级随机抽样 从200箱中随机抽取10箱,每箱中随机抽取2盒,每盒 中随机抽取5个作为样本,称为三级随机抽样132 数据的分层数据的分层 定义定义:所谓数据的分层就是将收集来的样本数据根据不 同的使用目的和要求,按其性质、来源、影响因 素等对其进行分类的方法,它是分析产品质量问
12、 题产生原因的有效方法。注意事项注意事项:(1)数据的分层与数据收集目的紧密联系,目的不同,分层的方法与粗细也不同(2)分层的粗细与对生产过程了解的程度有关(3)分层是一项细致的工作,分层不当,将会造成问题 原因不清的后果 分层原则分层原则:操作人员 工艺装备 加工方法 时间 材料 环境 其他 例例1 例例214例例1在磨床上加工某零件外圆,由甲乙两工人操作各磨100个零件,其产生废品45件,试分析废品产生的原因。甲乙合计100100200光洁度不合格213椭圆度超标准123锥 度 不 合 格31821碰 伤17118小 计232245若只对工人,不对不合格原因进行分层:两工人的废品率相差无几
13、,找不出重点。若只对不合格原因,不对工人进行分层:则会得到主要因素为锥度不合格、碰伤两原因。对工人及不合格原因分层后:甲工人主要因素为碰伤;乙工人主要因素为锥度不合格15例例2在某产品装配过程中,经常发现齿轮箱盖漏油的现象,为解决该问题,对该工艺进行了现场调查,收集数据n=50;漏油数f=19;试用分层法找出影响产品质量的原因 1 通过分析:造成漏油的原因有两个 (1)齿轮箱密封垫是由甲、乙两厂分别供给的 (2)涂粘结剂的工人A、B、C操作方法不同 2 为分析问题原因,采用分层法分别对操作者和齿轮箱垫供货单位分层 3 措施:采用乙厂的齿轮箱垫,工人B的操作方法 4 效果:漏油率不但未降低,反而
14、增加了 5 再次分析原因:只是单纯地分别考虑不同工人,不同供应厂造成的漏 油情况,而没有进一步考虑不同工人用不同供应厂提供的齿轮箱垫造 成的漏油情况,即由于没进行更细致的综合分析造成的。作综合分层 结论:使用甲厂齿轮箱垫时B的操作方法好 使用乙厂的齿轮箱垫时A的操作方法好 采用措施后漏油率大大降低16操作者分层表操作者分层表工人漏油不漏油漏油率(%)A61332B3925C10953合计193138供货厂漏油不漏油漏油率(%)甲111444乙81732合计193138齿轮箱垫供货单位分层表齿轮箱垫供货单位分层表17综合分层表综合分层表齿轮箱垫计甲乙A漏606不漏21113B漏033不漏549C
15、漏5510不漏729计漏11819不漏141731合计252550供货厂操作者183 明确数据收集的目的及方法明确数据收集的目的及方法 目的通常有下列几种:(1)为掌握生产现状收集数据 (2)为分析问题收集数据 (3)为判定产品质量合格与否收集数据 (4)为控制生产状态收集数据 (5)为掌握与调节工艺状态收集数据 目的不同,收集的方法(数量、时间、地点、取样方式、测试方法、精确度以及定性质量指 标数量化的方法及标准等)不同194 作好数据记录,保证数据真实、可信、准确作好数据记录,保证数据真实、可信、准确(1)为避免数据遗漏,在收集的同时进行数据整理和简单的 分层,应尽量使用预先设计的数据记录
16、表格调查表 调查表是为了掌握生产和试验现场情况,根据分层的思 想设计出的数据及不合格记录表格。是收集数据并对数 据进行粗略整理的有效工具。根据使用目的,使用场合,使用对象以及使用范围不同,调查表的形式,内容也多种多样,在实际中可以灵活设 计和应用(2)注意记录与数据有关的数据背景,如测试时间、地点、数量、测试者、零件号、批号、名称规格及必要的环境 条件等。有利于分析问题,且可以避免不同条件的数据混淆(3)数据必须真实、可靠、准确20不良项目调查表不良项目调查表铸件缺陷原始记录表零件名称:盖子 零件图号:日期:单位:车间工段 操作者:填号人:检查记录小计欠铸正正正正正一29缩裂正一10气孔正正正
17、正20夹渣一一5折叠T一3其他T2合计38981469部位缺陷项目21缺陷位置调查表缺陷位置调查表机翼划伤位置记录表单位:车间工段日期:年 月 日操作者:填号者:严重划伤:轻划伤 0 :压坑 22四四 数据的分类数据的分类不同的样本数据来源于不同的总体,即是不同的随机变量的一组(某些)取值,不同的随机变量有不同的统计规律。因此在进行数据分析前必须 分清数据的类型 1 计量值数据计量值数据:可以连续数值的数据 如长度、温度、硬度、强度、化学成分、时间 它是连续型随机变量的一组取值具有连续型随机变量的 分布特征 2 计数值数据计数值数据:是对单位产品或产品上的缺陷进行检查时得到正整数数 据如不合格
18、品数、出勤人员、疵点数等 注意:表示百分率的数据(如出勤率、不合格品率、退修率等)其类 型取决于其分子数据的类型 分类:(1)计件值数据:对产品 按件检查时得到的数据(如批产品 中的不合格品数)(2)计点值数据:检查 单件产品上质量缺陷时得到的数据如 单位棉织品上的 疵点数、铸件上的砂眼数、收音机底版 焊点数等)3 顺序值数据顺序值数据:为了把定性指标定量化,按某种标准进行评分以比较优 势程序,确定评定等级或类别得到的数据23 11.2 11.2 数字特征描述数字特征描述(估计估计)一一 统计量统计量二二 样本平均值样本平均值三三 众数众数四四 中位数中位数五五 极差极差六六 样本方差样本方差
19、七七 样本均方差样本均方差24一一 统计量统计量l描述样本数据统计性质的度量值称为统计特征量,简称统计量。统计量是随机变量X数字特征的估计值l统计量的数值大小是由收集的样本数据决定的,统计量是样本数据的函数,但其中不包含未知的参数。如果说,在一个函数中,既包括样本数据,又有未知参数,那么这个函数就不能称为统计量。l鉴于样本抽取的随机性,作为样本的函数,统计量也是一个随机变量。统计量的分布是由X 的分布决定的l常用统计量有样本平均值 、中位数 、众数、极差R、方差S2、均方差S等25二二 样本平均值样本平均值1 概念概念 从总体中随机抽取大小为n的样本,其数据分别为x1、x2、xn,则其样本平均
20、 值记为 样本平均值 是总体X数学期望的估计值 若样本数据的种类数为k,第j种数据的数值为xj;xj出现的频 数为fj;此时可用下式计算:例例1 12 性质性质26例例1 1 从某工序加工的一批零件中随机抽取样本大小为12的 数据。其尺寸分别为:25.5,25.8,25.9,25.7,25.8,25.6,25.9,25.8,25.8,25.6,25.9,25.8。试估计该 批零件的均值。解:或272 性质性质 是一个随机变量,若总体的数学期望为,方差为2,则随 机变量 的数学期望和方差分别为:可以看出,n越大,的散布越小。例2 从一批产品中随机抽取5件测量其尺寸,得数据如下:14.5,14.0
21、,13.2,13.5,14.8。设母体的均方差=1,试求尺寸的均 值及平均尺寸的方差。样本平均值是描述随机变量集中位置特征的最常用的量,通常 用对称或近似对称分布(如正态分布)随机变量数学期望的估计。28三三 众数众数l概念概念:在样本数据中,出现频数最多或频率最大的数据称为众数。它也是描述数据集中位置的统 计量。l使用条件使用条件:只有当数据个数较多而且有 明显的集中趋势时,才能计算众数。l例例3 3:试求例1中样本数据的众数 解:由例1表,显然,样本数据的众数为 25.8。29四四 中位数中位数 概念:将样本数据按大小顺序排列,若样本大小n为奇数,排在正中央的数据为中位数;若样本 大小为偶
22、数,排在 中央的两个数据的算术平均值为中位数。中位数用 表 示。例4 试找出3、5、6、7、11五个样本数据和3、5、6、8、9、11六个样本数据的中 位数。解:3、5、6、7、11的中位数为6;3、5、6、8、9、11的中位数为 。当总体为连续型随机变量且概率密度曲线为对称时(如正 态分布),常用中位数估计总体均 值。即此时,不仅计算简单,同时还不受样本中过大或过小数 据的影响。正态总体 的样本中位数 渐进为 ,因此正态总体用 估计有时是适宜的。30五五 极差极差l概念概念:将样本数据按大小顺序排列,数列中最大值max(xi)与最小数据min(xi)之差 称为样本的极差。记为R。l例例5 5
23、 如例4中,两组数据的极差均为 R=11-3=8。l作用作用:样本极差是描述总体离散程度的数量值。l在正态总体标准差估计场合 当n10时,将数据分组求极差均值。31六六 样本方差样本方差 概念概念:设样本数据x1、x2、xn为来自总体X的样本 数据。若总体的数学期望已知,则样本方 差S2的计算公式为 若总体的数学期望未知,则样本方差S2的 计算公式为:样本方差是总体X方差D(X),即2(X)的估计值常用计算公式常用计算公式例例32常用计算公式常用计算公式在实际问题中,经常碰到的是数学期望未知的情况。即:在现场中,为计算方便,在n较大时,有时使用下式代替进行计算。在实际计算中,常用化简整理后的下
24、式进行计算。若样本数据的种类数为k,第j种数据的数值为xj,xj出现的频 数为fj,此时,S2的计算可采用下式 33例例 6计算例1所给样本数据的方差 或或34七七 样本均方差样本均方差 概念概念:总体X的均方差 为方差D(X)(2(X))的正平方根,即 因此有:例例7 试计算例6中样本数据的均方差 样本均方差是总体均方差的估计值3511.311.3分布状态描述分布状态描述频数直方图频数直方图一一 概念:概念:频数直方频数直方 图是通过对随机收集的样本数据图是通过对随机收集的样本数据 进行分组整理,并用图形描述总体分布状进行分组整理,并用图形描述总体分布状 态的一种常用工具态的一种常用工具 二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 企业管理课件 【企业管理课件】-第十一章 描述统计 企业管理 课件 第十一 描述 统计
限制150内