离散数学 第四章 二元关系和函数精选PPT.ppt
《离散数学 第四章 二元关系和函数精选PPT.ppt》由会员分享,可在线阅读,更多相关《离散数学 第四章 二元关系和函数精选PPT.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、离散数学 第四章 二元关系和函数第1页,此课件共30页哦4.1 集合的笛卡儿积和二元关系集合的笛卡儿积和二元关系n 有序对有序对n 笛卡儿积及其性质笛卡儿积及其性质n 二元关系的定义二元关系的定义n 二元关系的表示二元关系的表示第2页,此课件共30页哦2有序对有序对定义定义 由两个客体由两个客体 x 和和 y,按照一定的顺序组成的,按照一定的顺序组成的 二元组称为二元组称为有序对有序对,记作,记作实例:点的直角坐标实例:点的直角坐标(3,4)有序对性质有序对性质 有序性有序性 (当(当x y时)时)与与 相等的充分必要条件是相等的充分必要条件是 =x=u y=v例例1 =,求,求 x,y.解解
2、 3y 4=2,x+5=y y=2,x=3 第3页,此课件共30页哦3有序有序 n 元组元组定义定义 一个一个有序有序 n(n 3)元组元组 是一个是一个有序对,其中第一个元素是一个有序有序对,其中第一个元素是一个有序 n-1元组,即元组,即 =,xn 当当 n=1时时,形式上可以看成有序形式上可以看成有序 1 元组元组.实例实例 n 维向量是有序维向量是有序 n元组元组.第4页,此课件共30页哦4笛卡儿积笛卡儿积定义定义 设设A,B为集合,为集合,A与与B 的的笛卡儿积笛卡儿积记作记作A B,即即 A B=|x A y B 例例2 A=1,2,3,B=a,b,c A B=,B A=,A=,P
3、(A)A=,第5页,此课件共30页哦5笛卡儿积的性质笛卡儿积的性质不适合交换律不适合交换律 A B B A (A B,A,B)不适合结合律不适合结合律 (A B)C A(B C)(A,B)对于并或交运算满足分配律对于并或交运算满足分配律 A(B C)=(A B)(A C)(B C)A=(B A)(C A)A(B C)=(A B)(A C)(B C)A=(B A)(C A)若若A或或B中有一个为空集,则中有一个为空集,则A B就是空集就是空集.A=B=若若|A|=m,|B|=n,则则|A B|=mn 第6页,此课件共30页哦6性质的证明性质的证明证明证明 A(B C)=(A B)(A C)证证
4、任取任取 A(BC)xAyBC xA(yByC)(xAyB)(xAyC)ABAC (AB)(AC)所以有所以有A(BC)=(AB)(AC).第7页,此课件共30页哦7例题例题 解解(1)任取任取 A C x A y C x B y D B D 例例3 (1)证明证明 A=B C=D A C=B D(2)A C=B D是否推出是否推出 A=B C=D?为什么?为什么?(2)不一定不一定.反例如下:反例如下:A=1,B=2,C=D=,则则 A C=B D 但是但是 A B.第8页,此课件共30页哦8二元关系的定义二元关系的定义定义定义 如果一个集合满足以下条件之一:如果一个集合满足以下条件之一:(
5、1)集合非空)集合非空,且它的元素都是有序对且它的元素都是有序对(2)集合是空集)集合是空集则称该集合为一个则称该集合为一个二元关系二元关系,简称为简称为关系关系,记作,记作R.如如R,可记作可记作 xRy;如果;如果 R,则记作则记作x y实例:实例:R=,S=,a,b.R是二元关系是二元关系,当当a,b不是有序对时,不是有序对时,S不是二元关系不是二元关系根据上面的记法,可以写根据上面的记法,可以写 1R2,aRb,a c 等等.第9页,此课件共30页哦9从从A到到B的关系与的关系与A上上的关系的关系定义定义 设设A,B为集合为集合,AB的任何子集所定义的二元的任何子集所定义的二元关系叫做
6、关系叫做从从A到到B的二元关系的二元关系,当当A=B时则叫做时则叫做 A上上的二元关系的二元关系.例例4 A=0,1,B=1,2,3,R1=,R2=AB,R3=,R4=.那么那么 R1,R2,R3,R4是从是从 A 到到 B 的二元关系的二元关系,R3和和R4同时也是同时也是 A上的二元关系上的二元关系.计数计数|A|=n,|AA|=n2,AA的子集有的子集有 个个.所以所以 A上有上有 个不同的二元关系个不同的二元关系.例如例如|A|=3,则则 A上有上有=512个不同的二元关系个不同的二元关系.第10页,此课件共30页哦10A上重要关系的实例上重要关系的实例设设 A 为任意集合,为任意集合
7、,是是 A 上的关系,称为上的关系,称为空关系空关系EA,IA 分别称为分别称为全域关系全域关系与与恒等关系恒等关系,定义如下:,定义如下:EA=|xAyA=AA IA=|xA例如例如,A=1,2,则则 EA=,IA=,第11页,此课件共30页哦11A上重要关系的实例(续)上重要关系的实例(续)小于等于关系小于等于关系 LA,整除关系整除关系DA,包含关系包含关系R 定义:定义:LA=|x,yAxy,A R,R为实数集合为实数集合 DB=|x,yBx整除整除y,B Z*,Z*为非为非0整数集整数集 R=|x,yAx y,A是集合族是集合族.类似的还可以定义大于等于关系类似的还可以定义大于等于关
8、系,小于关系小于关系,大于关系大于关系,真真包含关系等等包含关系等等.第12页,此课件共30页哦12实例实例例如例如 A=1,2,3,B=a,b,则则 LA=,DA=,A=P(B)=,a,b,a,b,则则 A上的包含关系是上的包含关系是 R=,第13页,此课件共30页哦13关系的表示关系的表示表示方式:关系的集合表达式、关系矩阵、关系图表示方式:关系的集合表达式、关系矩阵、关系图 关系矩阵关系矩阵:若:若A=a1,a2,am,B=b1,b2,bn,R是是从从A到到B的关系,的关系,R的关系矩阵是布尔矩阵的关系矩阵是布尔矩阵MR=rij m n,其中其中 rij=1 R.关系图关系图:若:若A=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 第四章 二元关系和函数精选PPT 第四 二元关系 函数 精选 PPT
限制150内