数学:121《排列》(1)课件(新人教A版选修2-3).ppt
《数学:121《排列》(1)课件(新人教A版选修2-3).ppt》由会员分享,可在线阅读,更多相关《数学:121《排列》(1)课件(新人教A版选修2-3).ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、创设情境创设情境,引出排列问题引出排列问题探究探究 在在1.1节的例节的例9中我们看到中我们看到,用分步乘用分步乘法计数原理解决这个问题时法计数原理解决这个问题时,因做了因做了一些重复性工作而显得繁琐一些重复性工作而显得繁琐,能否对能否对这一类计数问题给出一种简捷的方这一类计数问题给出一种简捷的方法呢法呢?探究:探究:问题问题1:从甲、乙、丙:从甲、乙、丙3名同学中选出名同学中选出2名参加一项活名参加一项活动,其中动,其中1名同学参加上午的活动,另名同学参加下名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?午的活动,有多少种不同的选法?问题问题2:从:从1,2,3,4这这4个
2、数中,每次取出个数中,每次取出3个排成个排成一个三位数,共可得到多少个不同的三位数?一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?怎样的数学模型来刻画?探究:探究:问题问题1:从甲、乙、丙:从甲、乙、丙3名同学中选出名同学中选出2名参加一项活名参加一项活动,其中动,其中1名同学参加上午的活动,另名同学参加下名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?午的活动,有多少种不同的选法?分析:把题目转化为分析:把题目转化为从甲、乙、丙从甲、乙、丙3名同学中选名同学中选2名,名,按照参加上午的活动在
3、前,参加下午的活动在后的按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法?顺序排列,求一共有多少种不同的排法?上午上午下午下午相应的排法相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙第一步:确定参加上午活动的同学即从第一步:确定参加上午活动的同学即从3 3名中任名中任 选选1 1名,有名,有3 3种选法种选法.第二步:确定参加下午活动的同学,有第二步:确定参加下午活动的同学,有2 2种方法种方法根据分步计数原理:根据分步计数原理:32=6 32=6 即共即共6 6种方法。种方法。把上面问题中被取的对象叫做把上面问题中被取的对象叫做元素元素,于是问于是问题就可
4、以叙述为:题就可以叙述为:从从3个不同的元素个不同的元素a,b,c中任取中任取2个,然后按照一定个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?的顺序排成一列,一共有多少种不同的排列方法?ab,ac,ba,bc,ca,cb问题问题2:从从1,2,3,4这这4个数中,每次取出个数中,每次取出3个排成个排成一个三位数,共可得到多少个不同的三位数?一个三位数,共可得到多少个不同的三位数?从从4个不同的元素个不同的元素a,b,c,d 中任取中任取3个,然后按照一定的顺个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?序排成一列,共有多少种不同的排列方法?abc,abd,acb,ac
5、d,adb,adc;bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb;dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:有此可写出所有的三位数:123,124,132,134,142,143;213,214,231,234,241,243,312,314,321,324,341,342;412,413,421,423,431,432。基本概念基本概念1、排列:、排列:一般地,从一般地,从n个不同中取出个不同中取出m(m n)个元素,个元素,按照一定的顺序排成一列,叫做从按照一定的顺序排成一列,叫做从n个个不同元不同元素中取出素
6、中取出m个元素的一个排列。个元素的一个排列。说明:说明:1 1、元素不能重复。、元素不能重复。n n个中不能重复,个中不能重复,m m个中也不能重复。个中也不能重复。2 2、“按一定顺序按一定顺序”就是与位置有关,这是判断一个问题是就是与位置有关,这是判断一个问题是否是排列问题的关键。否是排列问题的关键。3 3、两个排列相同两个排列相同,当且仅当这两个排列中的元素完全相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。而且元素的排列顺序也完全相同。4 4、m mn n时的排列叫选排列,时的排列叫选排列,m mn n时的排列叫全排列。时的排列叫全排列。5 5、为了使写出的所有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列 数学 121 课件 新人 选修
限制150内