2023年三角函数诱导公式-教学反思.docx
《2023年三角函数诱导公式-教学反思.docx》由会员分享,可在线阅读,更多相关《2023年三角函数诱导公式-教学反思.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年三角函数诱导公式-教学反思 第一篇:三角函数诱导公式-教学反思 我的教学反思 三角函数的诱导公式(一)讲课老师:詹启发 根据学校教务处和数学教研组的教学工作支配,我于12月22日在高一(8)班讲授了一节三角函数的诱导公式公开课。现将本节课做得好与不好的地方总结如下: 本人自己感到满足之处有: 1.教学目标明确,符合新教材的教学要求和学生的认知水平及认知心理,目标设计表达了学科素养。 2.教学内容的设计上抓住了主干学问,把握了重点,突破了难点,留意了教学的条理性。情境导入方面,通过三个设问,激发学生的学习爱好,激励和引导学生主动参与诱导公式的探究觉察过程。演板题目设计典型,难度适中,有
2、确定的效度。 3.运用课件讲授诱导公式,做到图文并茂,让学生能轻松地认知诱导公式,基本到达了预期的教学效果。 4.运用一般话教学,语言精练精确,不说废话。 5.学生学习爱好深厚,答题踊跃,自主、合作、探究学习的看法得以表达,获得了主动的情感体验。 但在教学过程中仍存在一些缺憾:上课时因为惊慌没有在黑板上书写课题;教学中一下微小环节打磨不够,强调不够;板书较少;对做得好的学生缺少表扬等 通过参与这次讲课,使我得到了熬炼,尤其是听课老师中肯的评课,让我收获颇多,将受益终生。盼望今后有机会多参加这样的活动。 其次篇:三角函数诱导公式(一)教学设计 学科:数学 年级:高一 教材: 学校:江苏省羊尖高级
3、中学 姓名:郭丽娟 三角函数诱导公式 一教学设计 老师是教学活动中的参与者、组织者与引导者,课堂上必需留足学生活动的时间。课堂教学是老师在有限的时空中最大限度地引导学生获得学问、技能的过程,更是学生生命活动的过程。 三角函数的诱导公式是一般中学课程标准试验教科书数学必修四第一章第三节的内容,其主要内容是三角函数诱导公式中的公式 一至公式 六本节是第一课时,教学内容为公式 一、二、三、四.本课内容主要是通过学生在已经驾驭的随便角的三角函数的定义的基础上推导出诱导公式 一,并且利用对称思想觉察随便角 a与其终边关于 x轴、y 轴和原点对称的角的关系,觉察他们与单位圆的交点坐标之间关系,进而觉察他们
4、的三角函数值的关系,即从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的流程,渗透了转化与化归等数学思想方法,本课内容的实质是将终边对称的图形关系“翻译成三角函数的代数关系,为培育学生思索、动手、动脑提出了要求,也有助于培育学生养成数学学习的思维习惯。 三维目标: 一、学问与技能: 1、借助于单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将随便角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式的证明问题。 2、能通过公式的运用,了解未知到已知、困难到简洁的转化过程,提高分析和解决问题的实力。 二、重点难点: 1、诱导公式的推导、理解和符号的推断 2、诱导公式
5、的应用 三、过程与方法 1、师生之间,生生之间互相沟通,逐步使学生学会共同学习 2、通过探讨诱导公式,明确数学概念的严谨性和科学性,做一个具备严谨科学看法的人 四、情感,看法与价值观 1、通过单位圆中三角函数线的利用,体会三角函数线是一类重要的运算工具,逐步培育学生的应用意识 2、在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是相识世界的有效手段,也是的抽象的数学符号变得直观具体 : 一复习: 1 利用单位圆表示随便角a的正弦值和余弦值; 设计意图:顺应学生认知,指明学习方向,为接下来的内容推导打好铺垫。 二新课探究 问题一:你能求3900的正弦值和余弦值吗? 学生思索并回
6、答,老师即时点评与归纳老师板书:公式一及其作用 设计意图:承上启下,利用刚刚的复习旧知引入今日的课题 问题二:同名的三角函数值相等,角的终边确定相等吗?比方你能找到和300的正弦值相同,但是终边不相同的角吗? 学生活动,老师利用几何画板展示学生的探讨结果 说明: 1、推导出两角关于y轴对称的公式三 2、公式三的作用,老师板书:公式三及其作用 设计意图:问题的目的在于熬炼学生逆向思维实力,同时也从反面来考察学生对概念的驾驭状况.并由此设置阶梯关心学生找寻其次组公式。同时结合多媒体技术,利用几何画板直观的展示两角关于y轴对称的三角函数关系。 问题三:请大家回顾一下,我们刚刚是如何推导出这组公式的?
7、 学生活动 说明:推导流程:从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的转化和化归思想。老师板书 设计意图:关心学生整理数学思维方法,明确推导公式过程中的本质内容,从而为以下内容铺垫。 问题四:你还能推导随便角a与其终边关于 x轴和原点对称的角的 三角函数关系吗? 学生活动 说明: 1、推导出两角关于x轴和原点对称的公式二、四 2、公式的作用,这里的a是随便角,在弧度制和角度制下都成立 3、从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的推导流程是本课的本质内容。 老师板书:公式二、四及其作用 设计意图:通过问题四加强学生对概念的理解与运用。感知数学。同时结合多媒体
8、技术,利用几何画板直观的展示两角关于x轴和原点对称的三角函数关系 三探究成果 2、三角函数诱导公式:公式一 公式二 公式三 公式四老师板书 问题五:四组公式的符号有什么特点规律? 学生活动,老师点评归纳 设计意图:熬炼学生的分析总牢固力,并减轻学生记忆12个公 式的思维负担,表达数学的美。 四数学应用 例 1、求值: 1sinp; 2cos7611p; 3tan(-1560o)4设计意图:考察学生的数学运用实力,以及公式运用过程中的转化和化归思想,体会数学重要的思想方法。 cos(1800+a)sin(3600+a)变 1、化简 00sin(-180-a)cos(180-a) sin+sin变
9、 2、:化简 其中kZ sin(a+kp)cos(a-kp)设计意图:稳固学生所驾驭的诱导公式的运用实力,考察学生的分类探讨数学思想方法,并能解决问题。 四课堂小结 问题六:这节课你主要学习到了哪些重要学问?并且你有哪些心得体会可以和我们一起共享? 说明: 1、诱导公式的实质是将终边对称的图形关系“翻译到三角函数之间的代数关系。 2、推导中从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的流程,渗透了转化与化归等数学思想方法 3、利用诱导公式可以将随便角的三角函数值转化为锐角的三 5 角函数值。 五课后作业 书本第20页练习1、2、3题 六板书设计 三角函数诱导公式 一1公式及其作用
10、: 公式一: 作用: 公式二: 作用: 公式三: 作用: 公式四: 作用: 2公式的记忆规律: 3数学应用: 例1: 变题1: 变题2: 4课后小结: 5作业布置: 第三篇:三角函数诱导公式(一)教学设计 三角函数诱导公式 一教学设计 老师是教学活动中的参与者、组织者与引导者,课堂上必需留足学生活动的时间。课堂教学是老师在有限的时空中最大限度地引导学生获得学问、技能的过程,更是学生生命活动的过程。 三角函数的诱导公式是一般中学课程标准试验教科书数学必修四第一章第三节的内容,其主要内容是三角函数诱导公式中的公式 一至公式 六本节是第一课时,教学内容为公式 一、二、三、四.本课内容主要是通过学生在
11、已经驾驭的随便角的三角函数的定义的基础上推导出诱导公式 一,并且利用对称思想觉察随便角 a与其终边关于 x轴、y 轴和原点对称的角的关系,觉察他们与单位圆的交点坐标之间关系,进而觉察他们的三角函数值的关系,即从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的流程,渗透了转化与化归等数学思想方法,本课内容的实质是将终边对称的图形关系“翻译成三角函数的代数关系,为培育学生思索、动手、动脑提出了要求,也有助于培育学生养成数学学习的思维习惯。 三维目标: 一、学问与技能: 1、借助于单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将随便角的三角函数化为锐角的三角函数,并解决有关三角函数
12、求值、化简和恒等式的证明问题。 2、能通过公式的运用,了解未知到已知、困难到简洁的转化过程,提高分析和解决问题的实力。 二、重点难点: 1、诱导公式的推导、理解和符号的推断 2、诱导公式的应用 三、过程与方法 1、师生之间,生生之间互相沟通,逐步使学生学会共同学习 2、通过探讨诱导公式,明确数学概念的严谨性和科学性,做一个具备严谨科学看法的人 四、情感,看法与价值观 1、通过单位圆中三角函数线的利用,体会三角函数线是一类重要的运算工具,逐步培育学生的应用意识 2、在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是相识世界的有效手段,也是的抽象的数学符号变得直观具体 : 一复习
13、: 1 利用单位圆表示随便角a的正弦值和余弦值; 设计意图:顺应学生认知,指明学习方向,为接下来的内容推导打好铺垫。 二新课探究 问题一:你能求3900的正弦值和余弦值吗?学生思索并回答,老师即时点评与归纳老师板书:公式一及其作用 设计意图:承上启下,利用刚刚的复习旧知引入今日的课题 问题二:同名的三角函数值相等,角的终边确定相等吗?比方你能找到和300的正弦值相同,但是终边不相同的角吗? 学生活动,老师利用几何画板展示学生的探讨结果 说明: 1、推导出两角关于y轴对称的公式三 2、公式三的作用,老师板书:公式三及其作用 设计意图:问题的目的在于熬炼学生逆向思维实力,同时也从反面来考察学生对概
14、念的驾驭状况.并由此设置阶梯关心学生找寻其次组公式。同时结合多媒体技术,利用几何画板直观的展示两角关于y轴对称的三角函数关系。 问题三:请大家回顾一下,我们刚刚是如何推导出这组公式的? 学生活动 说明:推导流程:从“角的关系到“对称关系到“坐标关系再到“角的三角函数关系的转化和化归思想。老师板书 设计意图:关心学生整理数学思维方法,明确推导公式过程中的本质内容,从而为以下内容铺垫。 问题四:你还能推导随便角a与其终边关于 x轴和原点对称的角的三角函数关系吗? 学生活动 说明: 1、推导出两角关于x轴和原点对称的公式二、四 2、公式的作用,这里的a是随便角,在弧度制和角度制下都成立 3、从“角的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 三角函数 诱导 公式 教学 反思
限制150内