《《实际问题与二次函数》ppt课件.ppt》由会员分享,可在线阅读,更多相关《《实际问题与二次函数》ppt课件.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学习的目的在于应用,日常学习的目的在于应用,日常生活中,工农业生产及商业活生活中,工农业生产及商业活动中,方案的动中,方案的最优化、最值问最优化、最值问题,如盈利最大、用料最省、题,如盈利最大、用料最省、设计最佳、距离最近设计最佳、距离最近等都与二等都与二次函数有关次函数有关.1、能根据实际情景学会建立二、能根据实际情景学会建立二次函数模型;次函数模型;2、运用二次函数的配方法或公、运用二次函数的配方法或公式法求出最大值或最小值;式法求出最大值或最小值;3、学会将实际问题转化为数学、学会将实际问题转化为数学问题问题.想一想想一想(1)yx2x 如图,船位于船正东处,现如图,船位于船正东处,现
2、在,两船同时出发,在,两船同时出发,A船以船以Km/h的的速度朝正北方向行驶,速度朝正北方向行驶,B船以船以Km/h的速度的速度朝正西方向行驶,何时两船相距最近?最近朝正西方向行驶,何时两船相距最近?最近距离是多少?距离是多少?设经过设经过t时后,、两船时后,、两船分别到达分别到达A、B如图),则两船如图),则两船的距离(的距离(AB)应为多少)应为多少?如何求出如何求出S的最小值?的最小值?AB东东北北实际生活问题转化为数学问题实际生活问题转化为数学问题A,B,如何运用二次函数求实际问题中的最如何运用二次函数求实际问题中的最大值或最小值?大值或最小值?复复习小小结 首先应当求出函数解析式和自
3、变首先应当求出函数解析式和自变量的取值范围,然后通过量的取值范围,然后通过配方法配方法变形,变形,或利用或利用公式法公式法求它的最大值或最小值求它的最大值或最小值.注意:在此求得的最大值或最小值对注意:在此求得的最大值或最小值对应的自变量的值应的自变量的值必须在自变量的取值范必须在自变量的取值范围内围内.某某饮饮料料经经营营部部每每天天的的固固定定成成本本为为200元元,其其销销售售的的饮饮料料每每瓶瓶进进价价为为5元元.销销售售单单价价与与日日均销售量的关系如下:均销售量的关系如下:若若记记销销售售单单价价比比每每瓶瓶进进价价多多X元元,日日均均毛毛利利润润(毛毛利利润润=日日均均销销售售量
4、量单单件件利利润润-固固定定成成本本)为为y元元,求求y 关关于于X的的函函数数解解析析式式和和自自变变量量的的取取值范围;值范围;若若要要使使日日均均毛毛利利润润达达到到最最大大,销销售售单单价价应应定定为为多多少少元元(精精确确到到.元元)?最最大大日日均均毛毛利润为多少元?利润为多少元?销售单价(元)销售单价(元)6789101112日均销售量(瓶)日均销售量(瓶)480 440400360320280240某商场将进价某商场将进价40元一个的某种商品按元一个的某种商品按50元一个元一个售出时,能卖出售出时,能卖出500个,已知这种商品每个涨价个,已知这种商品每个涨价一元,销量减少一元,
5、销量减少10个,为赚得最大利润,售价个,为赚得最大利润,售价定为多少?最大利润是多少?定为多少?最大利润是多少?分析:利润=(每件商品所获利润)(销售件数)设每个涨价设每个涨价x元,元,那么那么(3)销售量可以表示为)销售量可以表示为(1)销售价可以表示为)销售价可以表示为(50+x)元)元(x 0 x 0,且为整数),且为整数)(500-10 x)(500-10 x)个(2)一件商品所获利)一件商品所获利润润可以表示为可以表示为(50+x-40)元)元(4)共获利)共获利润润y可以表示为可以表示为(50+x-40)(500-10 x)(50+x-40)(500-10 x)元元元元答:定价为答
6、:定价为70元元/个,此时利润个,此时利润最高为最高为9000元元.解解:y=(50+x-40)(500-10 x)=-10 x2 +400 x+5000(0 x50,且为整数,且为整数 )当当X=20时,时,Y有最大值有最大值9000X+20=70=-10(x-20)2 +9000 x x x0 00y y y h h h A BA BA BD D 河北省赵县的赵州桥的桥拱是抛物线型,河北省赵县的赵州桥的桥拱是抛物线型,河北省赵县的赵州桥的桥拱是抛物线型,河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的表达式为建立如图所示的坐标系,其函数的表达式为建立如图所示的坐标系,其函
7、数的表达式为建立如图所示的坐标系,其函数的表达式为y=xy=xy=xy=x2 2 2 2,当水位线在当水位线在当水位线在当水位线在ABABABAB位置时,水面位置时,水面位置时,水面位置时,水面宽宽宽宽 AB=30AB=30AB=30AB=30米米米米,这时水面离桥顶的高度这时水面离桥顶的高度这时水面离桥顶的高度这时水面离桥顶的高度h h h h是(是(是(是()A A A A、5 5 5 5米米米米 B B B B、6 6 6 6米;米;米;米;C C C C、8 8 8 8米;米;米;米;D D D D、9 9 9 9米米米米1 1 1252525解:当解:当x=15时时,Y=-152=-
8、9如图,在一面靠墙的空地上用长为如图,在一面靠墙的空地上用长为24米的篱笆,米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花围成中间隔有二道篱笆的长方形花圃,设花圃的宽圃的宽AB为为x米,面积为米,面积为S平米平米.(1)求求S与与x的函数关系式及自变量的取值范围;的函数关系式及自变量的取值范围;(2)当当x取何值时所围成的花圃面积最大,最大取何值时所围成的花圃面积最大,最大值是多少?值是多少?(3)若墙的最大可用长度为若墙的最大可用长度为8米,则求围成花圃米,则求围成花圃的最大面积的最大面积.ABCD(3)墙的可用长度为墙的可用长度为8米米 0244x 8 4x6当当x4m时,时,S最大值最
9、大值32 平方米平方米解解:(1)AB为为x米、篱笆长为米、篱笆长为24米米 花圃宽为(花圃宽为(244x)米)米 (2)当当x 时,时,S最大值最大值 36(平方米)(平方米)Sx(244x)4x224 x (0 x6)如图,在如图,在ABC中,中,AB=8cm,BC=6cm,B B9090,点,点P P从点从点A A开始沿开始沿ABAB边向点边向点B B以以2cm2cms s的速度移动,点的速度移动,点Q Q从点从点B B开始沿开始沿BCBC边向点边向点C C以以1cm1cms s的速度移动,如果的速度移动,如果P P,Q Q分别分别从从A A,B B同时出发,几秒后同时出发,几秒后PBQPBQ的面积最大?的面积最大?最大面积是多少?最大面积是多少?ABCPQ解:根据题意,设经过解:根据题意,设经过x秒秒后后PBQPBQ的面积的面积y y最大,则:最大,则:AP=2x cm PB=(8-2x)cm QB=x cm则则 y=1/2 x(8-2x)=-x2 +4x=-(x2 -4x +4 -4)=-(x-2)2 +4所以,当所以,当P、Q同时运动同时运动2秒后秒后PBQPBQ的面积的面积y y最最大大最大面积是最大面积是 4 cm2(0 x4)ABCPQ
限制150内