2023年高中数学复习知识点.docx
《2023年高中数学复习知识点.docx》由会员分享,可在线阅读,更多相关《2023年高中数学复习知识点.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高中数学复习知识点 第一篇:中学数学复习学问点 数学起源于人类早期的生产活动,古巴比伦人从远古时代起先已经积累了确定的数学学问,并能应用实际问题。从数学本身看,他们的数学学问也只是视察和阅历所得,没有综合结论和证明,但也要充分确定他们对数学所做出的奉献。那么接下来给大家共享一些关于中学数学复习学问点,盼望对大家有所关心。 中学数学复习学问1 考点一:集合与简易规律 集合部分一般以选择题出现,属简洁题。重点考查集合间关系的理解和相识。近年的试题加强了对集合计算化简实力的考查,并向无限集进展,考查抽象思维实力。在解决这些问题时,要留意利用几何的直观性,并留意集合表示方法的转换与化简。简易
2、规律考查有两种形式:一是在选择题和填空题中干脆考查命题及其关系、规律联结词、“充要关系、命题真伪的推断、全称命题和特称命题的否认等,二是在解答题中深层次考查常用规律用语表达数学解题过程和规律推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简洁应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于简洁题和中档题,三是导数的综合应
3、用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面对量 一般是2道小题,1道综合解答题。小题一道考查平面对量有关概念及运算等,另一道对三角学问点的补充。大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题互相补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面对量为主的试题,要留意数形结合思想在解题中的应用。向量重点考查平面对量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点题型.考点四:数列与
4、不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵敏应用,一道解答题大多凸显以数列学问为工具,综合运用函数、方程、不等式等解决问题的实力,它们都属于中、高档题目.考点五:立体几何与空间向量 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中
5、,一般有12个客观题和一个解答题,多为中档题。 考点六:解析几何 一般有12个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面对量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。 考点七:算法复数推理与证明 高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列学问的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算
6、及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.中学数学复习学问2 第一、高考数学中有函数、数列、三角函数、平面对量、不等式、立体几何等九大章节。 主要是考函数和导数,这是我们整个中学阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;其次是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。 其次、平面对量和三角函数。
7、 重点考察三个方面:一个是划减与求值,第一,重点驾驭公式,重点驾驭五组基本公式。其次,是三角函数的图像和性质,这里重点驾驭正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。 第三、数列。 数列这个板块,重点考两个方面:一个通项;一个是求和。 第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。 第五、概率和统计。 这一板块主要是属于数学应用问题的范畴,当然应当驾驭下面几个方面,第一等可能的概率,其次事务,第三是独立事务,还有独立重复事务发生的概率。 第六、解析几何。 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下
8、面五类常考的题型,包括: 第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应当驾驭它的通法; 其次类我们所讲的动点问题; 第三类是弦长问题; 第四类是对称问题 第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的缘由,往往有这个缘由,我们所选方法不是很恰当,因此,在这一章里我们要驾驭比较好的算法,来提高我们做题的精确度,这是我们所讲的第六大板块。 第七、押轴题。 考生在备考复习时,应当重点不等式计算的方法,虽然说难度比较大,我建议考生,实行分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。 中学数学复习学问3
9、一、求动点的轨迹方程的基本步骤 建立适当的坐标系,设出动点M的坐标; 写出点M的集合; 列出方程=0; 化简方程为最简形式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这
10、种求轨迹方程的方法叫做相关点法。 参数法:当动点坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 -直译法:求动点轨迹方程的一般步骤 建系建立适当的坐标系; 设点设轨迹上的任一点P(x,y); 列式列出动点p所满意的关系式; 代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 中学数学复习学问4 1.
11、进行集合的交、并、补运算时,不要忘了全集和空集的特殊状况,不要遗忘了借助数轴和文氏图进行求解.2.在应用条件时,易A忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的互相关系是什么?如何推断充分与必要条件? 5.你知道“否命题与“命题的否认形式的区分.6.求解与函数有关的问题易忽视定义域优先的原则.7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域.9.原函数在区间上单调递增,则确定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不愿定单调 10.你娴
12、熟地驾驭了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“和“或;单调区间不能用集合或不等式表示.12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你驾驭了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需探讨 15.三个二次(哪三个二次?)的关系及应用驾驭了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。
13、17.“实系数一元二次方程有实数解转化时,你是否留意到:当时,“方程有解不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 18.利用均值不等式求最值时,你是否留意到:“一正;二定;三等.19.确定值不等式的解法及其几何意义是什么? 20.解分式不等式应留意什么问题?用“根轴法解整式(分式)不等式的留意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类探讨是关键,留意解完之后要写上:“综上,原不等式的解集是.22.在求不等式的解集、定义域及值域时,其结果确定要用集合或区间表示;不能用不等式表示.23.两个不等式
14、相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒即ab0,aq,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是简洁理解的。 但为什么说q是p的必要条件呢? 事实上,与“p=q等价的逆否命题是“非q=非p。它的意思是:若q不成立,则p确定不成立。这就是说,q对于p是必不行少的,因此是必要的。 (2)再看“充要条件 若有p=q,同时q=p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq 回忆一下初中学过的“等价于这一概念;假如从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记
15、作AB。“充要条件的含义,事实上与“等价于的含义完全相同。也就是说,假如命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。 (3)定义与充要条件 数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形这确定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。 明显,一个定理假如有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。 “充要条件有时还可以改用“当且仅当来表示,其中“当表示“充分。“仅当表示“必要。 (4)一般地,定义中的条件都
16、是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论都可作为必要条件。 中学数学复习学问点 其次篇:中学数学学问点 中学数学重点学问与结论分类解析 一、集合与简易规律 1集合的元素具有确定性、无序性和互异性 2对集合,时,必需留意到“极端状况: 或 ;求集合的子集时是否留意到 是任何集合的子集、是任何非空集合的真子集 3对于含有 个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4“交的补等于补的并,即 ;“并的补等于补的交,即 5推断命题的真假关键是“抓住关联字词;留意:“不或即且,不且即或 6“或命题的真假特点是“一真即真,要假全假;“且命题的真假特点是“一假即假,
17、要真全真;“非命题的真假特点是“一真一假 7四种命题中“逆者交换也、“否者否认也 原命题等价于逆否命题,但原命题与逆命题、否命题都不等价反证法分为三步:假设、推矛、得果 留意:命题的否认是“命题的非命题,也就是条件不变,仅否认结论所得命题,但否命题是“既否认原命题的条件作为条件,又否认原命题的结论作为结论的所得命题 8充要条件 第三篇:中学数学学问点 中学数学学问点 必修1集合函数概念与基本初等函数必修2立体几何初步平面解析几何初步必修3算法初步统计概率 必修4 基本初等函数三角函数平面对量三角恒等变形必修5 解三角形数列不等式 选修 常用规律用语圆锥曲线与方程空间向量与立体几何导数及其应用推
18、理与证明数系的扩充与复数的引入计数原理概率与统计几何证明选讲坐标系与参数方程不等式选讲 第四篇:中学数学学问点总结 中学数学难度更大,难度在于它的深度和广度,但假如能理清思路,抓住重点,多实践,变渣滓为暴君并非不行能。中学数学学问点总结有哪些你知道吗?一起来看看中学数学学问点总结,欢迎查阅! 中学数学学问点汇总 1.必修课程由5个模块组成: 必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面对量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上全部的学问点是全
19、部中学生必需驾驭的,而且要懂得运用。 选修课程分为4个系列: 系列1:2个模块 选修1-1:常用规律用语、圆锥曲线与方程、空间向量与立体几何。 选修1-2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:3个模块 选修2-1:常用规律用语、圆锥曲线与方程、空间向量与立体几何 选修2-2:导数及其应用、推理与证明、数系的扩充与复数 选修2-3:计数原理、随机变量及其分布列、统计案例 选修4-1:几何证明选讲 选修4-4:坐标系与参数方程 选修4-5:不等式选讲 2.重难点及其考点: 重点:函数,数列,三角函数,平面对量,圆锥曲线,立体几何,导数 难点:函数,圆锥曲线 高考相关考点: 1.集
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学 复习 知识点
限制150内