用列举法求概率(第一课时)ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《用列举法求概率(第一课时)ppt课件.ppt》由会员分享,可在线阅读,更多相关《用列举法求概率(第一课时)ppt课件.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能25.2.1 25.2.1 用列举法求概率用列举法求概率人教版九年级数学上册人教版九年级数学上册为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能古典概型的概率:一般地一般地,如果在一次试验中如果在一次试验中,有有n种可能的结果种可能的结果,并且它们发生的并且它们发生的可能性都相等可能性都相等,事件事件A包含其包含其中的中的m种结果种结果,那么事件那么事件A发生的概率为发生的概率为事件事件A发生的可发生的可能种数能种数试验的总
2、共可能试验的总共可能种数种数为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能古典概型的特点古典概型的特点1.1.可能出现的结果只有有限多个可能出现的结果只有有限多个;2.2.各种结果出现的可能性相等;各种结果出现的可能性相等;可能性事件的概率可以用列举法而求得。可能性事件的概率可以用列举法而求得。求概率的步骤:求概率的步骤:(1)列举出一次试验中的所有结果列举出一次试验中的所有结果(n个个);(2)找出其中事件找出其中事件A发生的结果发生的结果(m个个);(3)运用公式求事件运用公式求事件A的概率:的概率:为深入学习习近平新时代中国
3、特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1:掷两枚硬币,求下列事件的概率:掷两枚硬币,求下列事件的概率:(1)两枚硬币正面全部朝上)两枚硬币正面全部朝上(2)两枚硬币全部反面朝上)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上)一枚硬币正面朝上,一枚硬币反面朝上解:列举抛掷两枚硬币所能产生的全部结果,解:列举抛掷两枚硬币所能产生的全部结果,它们是:它们是:正正、正反、反正、反反正正、正反、反正、反反。所有的结。所有的结果共有果共有4种,并且这四个结果出现的可能性相等。种,并且这四个结果出现的可能性相等。为深入学习习近平新时代中国特色
4、社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能(1)所有的结果中,满足两枚硬币全部正面朝)所有的结果中,满足两枚硬币全部正面朝上(记为事件上(记为事件A)的结果只有一种,即)的结果只有一种,即“正正正正”所以所以P(A)=14(2)所有的结果中,满足两枚硬币全部反面朝)所有的结果中,满足两枚硬币全部反面朝上(记为事件上(记为事件B)的结果只有一种,即)的结果只有一种,即“反反反反”所以所以P(B)=14 (3)所有的结果中,满足一枚硬币正面朝上,)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件一枚硬币反面朝上(记为事件C)的结果共有)的结果共有
5、2种,种,即即“正反正反”“反正反正”,所以,所以P(C)=2412为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能列举法求概率列举法求概率枚举法枚举法在一次试验中,如果可能出现的结果在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结性大小相等,我们可通过列举试验结果的方法,分析出随机事件发生的概果的方法,分析出随机事件发生的概率。率。所谓枚举法,就是把事件发生的所有可能所谓枚举法,就是把事件发生的所有可能的结果一一列举出来,计算概率的一种数的结果一一列举
6、出来,计算概率的一种数学方法。学方法。为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1.掷两枚硬币掷两枚硬币,求下列事件的概率求下列事件的概率:(1)两枚硬币全部正面朝上两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上两枚硬币全部反面朝上;(3)一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上.问题:利用分类列举法可以知道事件发生的各种情况,问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?对于列举复杂事件的发生情况还有什么更好的方法呢?解解:其中一枚硬币记为其中
7、一枚硬币记为A,另一枚硬币记为另一枚硬币记为B,则所有可能结则所有可能结果如表所示果如表所示:正反正(正,正)(正,反)反(反,正)(反,反)AB总共总共4种结果种结果,每种结果出现的可能性相同每种结果出现的可能性相同.(1)所有结果中所有结果中,满足两枚硬币全部正面朝上的结果只满足两枚硬币全部正面朝上的结果只有一个有一个,即即“(正正,正正)”,所以所以P(两枚硬币全部正面朝上两枚硬币全部正面朝上)=为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例4.掷两枚硬币掷两枚硬币,求下列事件的概率求下列事件的概率:(1)两枚硬币全部正
8、面朝上两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上两枚硬币全部反面朝上;(3)一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上.解解:其中一枚硬币为其中一枚硬币为A,另一枚硬币为另一枚硬币为B,则所有可能结果如表所示则所有可能结果如表所示:正正反反正正(正正,正正)(正正,反反)反反(反反,正正)(反反,反反)AB总共总共4种结果种结果,每种结果出现的可能性相同每种结果出现的可能性相同.(2)所有结果中所有结果中,满足两枚硬币全部反面朝上的结果只满足两枚硬币全部反面朝上的结果只有一个有一个,即即“(反反,反反)”,所以所以P(两枚硬币全部反面朝上两枚硬币全部反面朝上)=(
9、3)所有结果中所有结果中,满足一枚硬币正面朝上满足一枚硬币正面朝上,一枚硬币反一枚硬币反面朝上的结果有面朝上的结果有2个个,即即“(正正,反反),(反反,正正)”,所以所以P(一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上)=为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能如图如图,袋中装有两个完全相同的球袋中装有两个完全相同的球,分别标有数分别标有数字字“1”1”和和“2”.2”.小明设计了一个游戏小明设计了一个游戏:游戏者游戏者每次从袋中随机摸出一个球每次从袋中随机摸出一个球,并自由转动图中并自由转动图中的转
10、盘的转盘(转盘被分成相等的三个扇形转盘被分成相等的三个扇形).).游戏规则是游戏规则是:w如果所摸球上的数字与转盘转出的数如果所摸球上的数字与转盘转出的数字之和为字之和为2,2,那么游戏者获胜那么游戏者获胜.求游戏者求游戏者获胜的概率获胜的概率.123列表练习列表练习:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能解解:每次游戏时每次游戏时,所有可能出现的结果如下所有可能出现的结果如下:总共有总共有6 6种结果种结果,每种结果出现的可能性相同每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为而所摸球上的数字与转盘转出
11、的数字之和为2 2的结果只有一种的结果只有一种:(1,1),:(1,1),因此游戏者获胜的因此游戏者获胜的概率为概率为1/6.1/6.转盘转盘摸球摸球1 11 12 2(1,1)(1,1)(1,2)(1,2)2 2(2,1)(2,1)(2,2)(2,2)3 3(1,3)(1,3)(2,3)(2,3)123为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例2 2、同时掷两个质地均匀的骰子、同时掷两个质地均匀的骰子,计算下列事计算下列事件的概率件的概率:(1)(1)两个骰子的点数相同两个骰子的点数相同(2)(2)两个骰子点数之和是两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 列举 概率 第一 课时 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内