《第24章圆的复习课件(2).ppt》由会员分享,可在线阅读,更多相关《第24章圆的复习课件(2).ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆、与圆有关的位置关系(圆、与圆有关的位置关系(1)襄阳市第二十三中学襄阳市第二十三中学 关海英关海英1/18/2023欢迎046班的同学们!注意听课,积极思考呵!本章知识结构图圆的基本性质圆的基本性质圆圆圆的对称性圆的对称性弧、弦圆心角之间的关系弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系与圆有关的位置关系正多边形和圆正多边形和圆有关圆的计算有关圆的计算点和圆的位置关系点和圆的位置关系切线切线直线和圆的位置关系直线和圆的位置关系三角形的外接圆三角形的外接圆三角形内切圆三角形内切圆等分圆等分圆圆和圆的位置关系圆和圆的位置关系弧长弧长扇形的面积
2、扇形的面积圆锥的侧面积和全面积圆锥的侧面积和全面积1/18/2023欢迎046班的同学们!注意听课,积极思考呵!一、一、垂径定理垂径定理OABCDMAM=BM,重视:重视:模型模型“垂径定理直角三角形垂径定理直角三角形”若若 CD是直径是直径 CDAB可推得可推得 AC=BC,AD=BD.1.1.定理定理 垂直于弦的直径垂直于弦的直径平分弦平分弦,并且平分并且平分弦所的两条弧弦所的两条弧.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!2 2、垂径定理的逆定理、垂径定理的逆定理CDAB,n由由 CD是是直直径径 AM=BM可推得可推得 AC=BC,AD=BD.OCD MAB平分弦
3、(平分弦(不是直径不是直径)的直径垂直于弦)的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!(1)直径直径(过圆心的线过圆心的线);(2)垂直弦;垂直弦;(2)(3)平分弦平分弦;(4)平分劣弧;平分劣弧;(3)(5)平分优弧平分优弧.知二得三知二得三注意注意:“直径平分弦则垂直弦直径平分弦则垂直弦.”这句话对吗这句话对吗?()错错OABCDM1/18/2023欢迎046班的同学们!注意听课,积极思考呵!OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧例例O O的半
4、径为的半径为10cm10cm,弦,弦ABCDABCD,AB=16AB=16,CD=12CD=12,则则ABAB、CDCD间的间的 距离是距离是_ _ .2cm或或14cm1/18/2023欢迎046班的同学们!注意听课,积极思考呵!OABDABD如由条件如由条件:AB=ABAB=AB OD=OD可推出AOB=AOB二、圆心角、弧、弦、弦心距的关系二、圆心角、弧、弦、弦心距的关系 在在同圆同圆或或等圆等圆中中,如果如果两个圆心角两个圆心角,两两条弧条弧,两条弦两条弦,两条弦心距两条弦心距中中,有一组量相有一组量相等等,那么它们所对应的其余各组量都分别相等那么它们所对应的其余各组量都分别相等.1/
5、18/2023欢迎046班的同学们!注意听课,积极思考呵!三、圆周三、圆周角定理及推论角定理及推论 9090的圆周角所对的弦是的圆周角所对的弦是 .OABCOBACDEOABC 定理定理:在同圆或等圆中在同圆或等圆中,同弧或等弧同弧或等弧所对的圆周角所对的圆周角相等相等,都等于这弧都等于这弧所对的所对的圆心角的一半圆心角的一半.推论推论:直径所对的圆周角是直径所对的圆周角是 .直角直角直径直径判断判断:(1)相等的圆心角所对的弧相等相等的圆心角所对的弧相等.(2)相等的圆周角所对的弧相等相等的圆周角所对的弧相等.(3)等弧所对的圆周角相等等弧所对的圆周角相等.()()()1/18/2023欢迎
6、046班的同学们!注意听课,积极思考呵!1、如图1,AB是O的直径,C为圆上一点,弧AC度数为60,ODBC,D为垂足,且OD=10,则AB=_,BC=_;2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间的关系为();A.AB=2CD B.AB2CD D.不能确定3、如图2,O中弧AB的度数为60,AC是O的直径,那么BOC等于();A150 B130 C120 D604、在ABC中,A70,若O为ABC的外心,BOC=;若O为ABC的内心,BOC=图1图21/18/2023欢迎046班的同学们!注意听课,积极思考呵!1、两个同心圆的直径分别为5 cm和3 cm,则圆环部分
7、的宽度为_ cm;2、如图1,已知O,AB为直径,ABCD,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来 ;3、为改善市区人民生活环境,市建设污水管网工程,某圆柱型水管的直径为100 cm,截面如图2,若管内污水的面宽AB=60 cm,则污水的最大深度为 cm;4、已知、是同圆的两段弧,且=2,则弦AB与CD之间的关系为()A.AB=2CD;B.AB2CD;D.不能确定图1图2.p.or.o.p.o.p四、点和圆的位置关系四、点和圆的位置关系Opr 点点p在在 o内内Op=r 点点p在在 o上上Opr 点点p在在 o外外1/18/2023欢迎046班的同学们!注意听课,积极思考呵
8、!不在同一直线上的三个点确定一个圆不在同一直线上的三个点确定一个圆(这个三角形叫做圆的这个三角形叫做圆的内接内接三角形,这个圆叫做三角三角形,这个圆叫做三角形的形的外接外接圆,圆心叫做三角形的圆,圆心叫做三角形的外心外心)圆内接四边形的性质:圆内接四边形的性质:(1)对角互补;对角互补;(2)任意一个外角都等于它的内任意一个外角都等于它的内对角对角反证法的三个步骤:反证法的三个步骤:1、提出假设、提出假设2、由题设出发,引出矛盾、由题设出发,引出矛盾3、由矛盾判定假设不成立,肯定结论正确、由矛盾判定假设不成立,肯定结论正确1/18/2023欢迎046班的同学们!注意听课,积极思考呵!1、O的半
9、径为的半径为R,圆心到点,圆心到点A的距离为的距离为d,且,且R、d分别分别是方程是方程x26x80的两根,则点的两根,则点A与与 O的位置关系是(的位置关系是()A点点A在在 O内部内部 B点点A在在 O上上C点点A在在 O外部外部 D点点A不在不在 O上上2、M是是 O内一点,已知过点内一点,已知过点M的的 O最长的弦为最长的弦为10 cm,最短的弦长为,最短的弦长为8 cm,则,则OM=_ cm.3、圆内接四边形、圆内接四边形ABCD中,中,ABCD可以是可以是()A、1 2 3 4 B、1 3 2 4 C、4 2 3 1 D、4 2 1 31/18/2023欢迎046班的同学们!注意听
10、课,积极思考呵!练:有两个同心圆,半径分别为练:有两个同心圆,半径分别为和和r,是圆环内一点,则是圆环内一点,则的取值的取值范围是范围是.rOPR1/18/2023欢迎046班的同学们!注意听课,积极思考呵!1 1、直线和圆相交、直线和圆相交nd d r;r;nd d r;r;2 2、直线和圆相切、直线和圆相切3 3、直线和圆相离、直线和圆相离nd d r.r.五五.直线与圆的位置关系直线与圆的位置关系OO相交相交O相切相切相离相离rrrddd1/18/2023欢迎046班的同学们!注意听课,积极思考呵!切线的判定定理切线的判定定理定理定理 经过半径的外端经过半径的外端,并且垂直于这条半径的并
11、且垂直于这条半径的直线是圆的切线直线是圆的切线.CDOA如图如图OAOA是是O O的的半径半径,且且CDOACDOA,CDCD是是O O的切线的切线.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!()定义()定义()圆心到直线的距离()圆心到直线的距离d圆的半径圆的半径r()()切线的判定定理:切线的判定定理:经过半径的外端经过半径的外端,并且垂直于这条半径的直线是圆的切线并且垂直于这条半径的直线是圆的切线.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!切线的判定定理的两种应用切线的判定定理的两种应用1、如果已知直线与圆有交点,往往、如果已知直线与圆有交点,往往
12、要要作出过这一点的半径作出过这一点的半径,再证明直线垂直再证明直线垂直于这条半径即可;于这条半径即可;2、如果不明确直线与圆的交点,往往、如果不明确直线与圆的交点,往往要要作出圆心到直线的垂线段作出圆心到直线的垂线段,再证明这条再证明这条垂线段等于半径即可垂线段等于半径即可1/18/2023欢迎046班的同学们!注意听课,积极思考呵!切线的性质定理切线的性质定理圆的切线垂直于圆的切线垂直于过切点的半径过切点的半径.CDCD切切O O于于,OA,OA是是O O的半的半径径CDOACDOA.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!切线的性质定理出可理解为切线的性质定理出可理解
13、为如果一条直线满足以下三个性质中的如果一条直线满足以下三个性质中的任意两个任意两个,那么,那么第三个也成立。第三个也成立。经过切点、经过切点、垂直于切线、垂直于切线、经过圆心。经过圆心。如如任意两个任意两个1/18/2023欢迎046班的同学们!注意听课,积极思考呵!1、两个同心圆的半径分别为3 cm和4 cm,大圆的弦BC与小圆相切,则BC=_ cm;2、如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_;3、下列四个命题中正确的是()与圆有公共点的直线是该圆的切线;垂直于圆的半径的直线是该圆的切线;到圆心的距离等于半径的直线是该圆的
14、切线 ;过圆直径的端点,垂直于此直径的直线是该圆的切线A.B.C.D.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!一一、判断。1、三角形的外心到三角形各边的距离相等;()2、直角三角形的外心是斜边的中点 ()二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径,内切圆半径;2、等边三角形外接圆半径与内切圆半径之比三、选择题:下列命题正确的是()A、三角形外心到三边距离相等B、三角形的内心不一定在三角形的内部C、等边三角形的内心、外心重合D、三角形一定有一个外切圆 6.5cm6.5cm2cm2cm2:12:1C C四、一个三角形,它的周长为30cm,它
15、的内切圆半径为2cm,则这个三角形的面积为_30cm1/18/2023欢迎046班的同学们!注意听课,积极思考呵!交点个数交点个数 名称名称0外离外离1外切外切2相交相交1内切内切0内含内含同心圆是内含的特殊情况同心圆是内含的特殊情况d,R,r 的关系的关系dR rd R+rd=R+rR-r d R+rd=R-rd R-r六六.圆与圆的位置关系圆与圆的位置关系A AB BC CO O七七七七.三角形的外接圆和内切圆:三角形的外接圆和内切圆:三角形的外接圆和内切圆:三角形的外接圆和内切圆:A AB BC CI I三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的
16、三角形内切圆的圆心叫三角形的内心内心内心内心。三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的外心外心外心外心实质实质性质性质三角形的外心三角形的外心三角形的内心三角形的内心三角形三边垂直平分线的交点三角形三边垂直平分线的交点三角形三内角角平分线的交点三角形三内角角平分线的交点到三角形各边的到三角形各边的距离相等距离相等到三角形各顶点到三角形各顶点的距离相等的距离相等锐角三角形的外心位于三角形锐角三角形的外心位于三角形内内,直角三角形的外心位于直角三角形直角三角形的外心位于直角三角形斜边中点斜边中点,钝角三角形的外心位于三角形钝角
17、三角形的外心位于三角形外外.ABCOABCCABOO三角形的外心三角形的外心是否一定在三角形的内部?是否一定在三角形的内部?1/18/2023欢迎046班的同学们!注意听课,积极思考呵!n从圆外一点向圆所引的两条切线长从圆外一点向圆所引的两条切线长相等相等;并且这一点和圆心的连线平分并且这一点和圆心的连线平分两条切线的夹角两条切线的夹角.ABPO12ABCODEFABCOODEF切线长定理及其推论切线长定理及其推论:n直角三角形的内切圆直角三角形的内切圆半径与三边关系半径与三边关系.n三角形的内切圆半径与圆面积三角形的内切圆半径与圆面积.PA,PB切切 O于于A,B PA=PB 1=21.如图
18、:圆如图:圆O中弦中弦AB等于半径等于半径R,则这条弦所对的,则这条弦所对的圆心角是圆心角是,圆周角是圆周角是.60度度30或或150度度1/18/2023欢迎046班的同学们!注意听课,积极思考呵!2:已知:已知ABC三点在圆三点在圆O上,连接上,连接ABCO,如果如果 AOC=140,求,求 B的度数的度数3.平面上一点平面上一点P到圆到圆O上一点的距离最长为上一点的距离最长为6cm,最短为最短为2cm,则圆则圆O的半径为的半径为_.D解:在优弧AC上定一点D,连结AD、CD.AOC=140 D=70 B=180 70 =110 2或或4cm1/18/2023欢迎046班的同学们!注意听课
19、,积极思考呵!4.4.怎样要将一个如图所示的怎样要将一个如图所示的破镜破镜重圆重圆?1/18/2023欢迎046班的同学们!注意听课,积极思考呵!ABCP5、如图,如图,AB是是 O的任意一条弦,的任意一条弦,OCAB,垂垂足为足为P,若,若 CP=7cm,AB=28cm,你能帮老师求出这你能帮老师求出这面镜子的半径吗?面镜子的半径吗?O714综合应用垂径定理和勾股定理可求得半径综合应用垂径定理和勾股定理可求得半径1/18/2023欢迎046班的同学们!注意听课,积极思考呵!6.如图:如图:AB是圆是圆O的直径,的直径,BD是圆是圆O的弦,的弦,BD到到C,AC=AB,BD与与CD的大小有什么关系?的大小有什么关系?为什么?为什么?补充:补充:若B=70,则DOE=E40 1/18/2023欢迎046班的同学们!注意听课,积极思考呵!7、如图、如图,AB是圆是圆O的直径的直径,圆圆O过过AC的中点的中点D,DEBC于于E证明证明:DE是圆是圆O的切线的切线.ABCDEO.1/18/2023欢迎046班的同学们!注意听课,积极思考呵!
限制150内