《123《角的平分线的性质》第1课时课件.ppt》由会员分享,可在线阅读,更多相关《123《角的平分线的性质》第1课时课件.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 黑池镇中学黑池镇中学 车红星车红星 活动活动1 复习提问复习提问1 1、角平分线角平分线的概念的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12 2 2、点到直线距离、点到直线距离:从直线外一点从直线外一点到这条直线的到这条直线的垂线段垂线段的的长度长度,叫做叫做点到直线的距离。点到直线的距离。OPAB我的我的长度长度 活动活动1 复习提问复习提问 如图如图,是一个平分角的仪器是一个平分角的仪器,其中其中AB=AD,BC=DC.将点将点A放在角的顶点放在角的顶点,AB和和AD沿着角的两边放下沿着角的两边放下,沿沿AC画一条画一条射线射线AE,AE就是角平分线就是
2、角平分线.你能说明它的道理吗你能说明它的道理吗?CADB你能由上面的探究得出作已知角的平分线的方法吗你能由上面的探究得出作已知角的平分线的方法吗?E角的平分线的作法角的平分线的作法证明:证明:在在ACD和和ACB中中 AD=AB(已知)(已知)DC=BC(已知)(已知)CA=CA(公共边)(公共边)ACD ACB(SSS)CAD=CAB(全等三角形的(全等三角形的 对应边相等)对应边相等)AC平分平分DAB(角平分线的定义)(角平分线的定义)活活动3 3:尺:尺规作作图作角的平分作角的平分线A A画法:画法:以为圆心,适当以为圆心,适当长为半径作弧,交于,长为半径作弧,交于,交于交于分别以,为
3、分别以,为圆心大于圆心大于 1/2 的长的长为半径作弧两弧在为半径作弧两弧在的内部交于的内部交于作射线作射线射线即为所求射线即为所求A A为什么为什么OCOC是角平分线呢?是角平分线呢?想一想:想一想:已知:已知:OM=ONOM=ON,MC=NCMC=NC。求证:求证:OCOC平分平分AOBAOB。证明证明:在:在OMCOMC和和ONCONC中,中,OM=ONOM=ON,MC=NCMC=NC,OC=OCOC=OC,OMC ONCOMC ONC(SSSSSS)MOC=NOCMOC=NOC 即:即:OCOC平分平分AOBAOBABOAOEBCPD 将将 AOBAOB对折对折,再折出一个直角三角形再
4、折出一个直角三角形(使第一条折痕为斜边使第一条折痕为斜边),),然后展开然后展开,观察两次折叠形成的三条折痕观察两次折叠形成的三条折痕,你能得出什么结论你能得出什么结论?可以看一看可以看一看,第一条折痕是第一条折痕是AOBAOB的平分线的平分线OCOC,第二次折叠第二次折叠形成的两条折痕形成的两条折痕PD,PEPD,PE是角的平分线上一点到是角的平分线上一点到AOBAOB两边的两边的距距离离,这两个距离相等这两个距离相等.折一折折一折角的平分线上的点到这个角的两边的距离相等角的平分线上的点到这个角的两边的距离相等猜想:猜想:已知:如图,已知:如图,OC是是AOB的平分线,点的平分线,点P在在O
5、C上,上,PDOA,PEOB,垂足分别是,垂足分别是D,E。求证:求证:PD=PE证明:证明:PDOA,PEOB(已知)(已知)PDO=PEO=90。(垂直的定义)(垂直的定义)在在PDO和和PEO中中 PD=PE(全等三角形的对应边相等)(全等三角形的对应边相等)PDO=PEO AOC=BOC OP=OP PDO PEO(AAS)DP PEAOBC猜想:猜想:角的平分线上的点到这个角的两边的距离相等角的平分线上的点到这个角的两边的距离相等求证:求证:证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出
6、证明过程。角平分线的性质角平分线的性质角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等BADOPEC定理定理应用所具备的应用所具备的条件条件:(1 1)角的平分线;)角的平分线;(2 2)点在该平分线上;)点在该平分线上;(3 3)垂直距离。)垂直距离。角角平分线的性质平分线的性质定理:角的平分线上的点到角的两边的距离相等定理:角的平分线上的点到角的两边的距离相等用用符号语言表示为:符号语言表示为:AOBPED OPOP平分平分AOBAOB PD OA PD OA,PE OBPE OBPD=PEPD
7、=PE(角角的的平分线上的点到角的两边的平分线上的点到角的两边的距离相等距离相等)推理的理由有推理的理由有三个三个,必须写完全,不能必须写完全,不能少了任何一个。少了任何一个。1、如图,如图,AD平分平分BAC(已知)已知)=,()在角的平分线上的点到这在角的平分线上的点到这个角的两边的距离相等。个角的两边的距离相等。BD CD()2、如图,如图,DCAC,DBAB (已知)已知)=,()在角的平分线上的点到这在角的平分线上的点到这个角的两边的距离相等。个角的两边的距离相等。BD CD()3、AD平分平分BAC,DCAC,DBAB(已知)(已知)=,()DBDC在角的平分线上的点到这个在角的平
8、分线上的点到这个角的两边的距离相等。角的两边的距离相等。不必再证全等不必再证全等4 4、在、在RtABCRtABC中,中,BDBD是角平分线,是角平分线,DEABDEAB,垂足为垂足为E E,DEDE与与DCDC相等吗?为什么?相等吗?为什么?ABCDE 5 5、如如图图,OC,OC是是AOBAOB的的平平分分线线,点点P P在在OCOC上上,PD,PD OA,PEOB,OA,PEOB,垂垂 足足 分分 别别 是是 D D、E,PD=4cm,E,PD=4cm,则则PE=_cm.PE=_cm.ADOBEPC46、已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分
9、别是E,F.求证:EB=FC.BAEDCF AD平分平分 BAC,DE AB,DF AC,BEDCFD=90。,DEDF证明:证明:在在Rt BED和和Rt CFD中中BD=CDED=FD Rt BED Rt CFD(HL)EB=FC这节课我们学习了哪些知识?这节课我们学习了哪些知识?1、“作已知角的平分线作已知角的平分线”的尺规作图法;的尺规作图法;2、角的平分线的性质:、角的平分线的性质:角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。OC是是AOB的平分线的平分线,又又 PDOA,PEOB PD=PE (角的平分线上的点角的平分线上的点到角的两边距离相等到角的两边距离相等).EDOABPC几何语言几何语言:3、证明几何命题的一般步骤:明确命题的已知和求证根据题意,画出图形,并用数学符号表示已知和求证;经过分析,找出由已知推出求证的途径,写出证明过程。布置作业:布置作业:1.习题习题12.3 2、6 2.基础训练基础训练 12.3角平分线的性质(第角平分线的性质(第1课时)课时)祝同学们学习进步祝同学们学习进步补充:已知补充:已知ABC中中,C=900,AD平分平分 CAB,且且BC=8,BD=5,求点求点D到到AB的距离的距离是多少?是多少?ABCDE你会吗?你会吗?
限制150内