《复变函数映射》PPT课件.ppt
《《复变函数映射》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《复变函数映射》PPT课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三讲复变函数与解析函数&1.复变函数的定义复变函数的定义&2.映射的概念映射的概念&3.反函数或逆映射反函数或逆映射3 复变函数复变函数1.复变函数的定义复变函数的定义与实变函数定义相类似与实变函数定义相类似定义定义A 例例1例例2oxy(z)Gouv(w)GG*w=f(z)在几何上,在几何上,w=f(z)可以看作:可以看作:定义域定义域函数值集合函数值集合 2.映射的概念映射的概念复变函数的几何意义复变函数的几何意义zw=f(z)wA 以下不再区分函数与映射(变换)。以下不再区分函数与映射(变换)。A 在复变函数中用两个复平面上点集之间的在复变函数中用两个复平面上点集之间的 对应关系来表达
2、两对变量对应关系来表达两对变量 u,v 与与 x,y 之间的对应关系,以便在研究和理解复变之间的对应关系,以便在研究和理解复变 函数问题时,可借助于几何直观函数问题时,可借助于几何直观.复变函数的几何意义是一个映射(变换)复变函数的几何意义是一个映射(变换)例例3解解关于实轴对称的一个映射关于实轴对称的一个映射见图见图1-11-2旋转变换旋转变换(映射映射)见图见图2例例4解解oxy(z)x、uy、v(z)、(w)ox、uy、v(z)、(w)o图图1-1图图1-2图图2uv(w)o例例5oxy(z)ouv(w)oxy(z)ouv(w)R=2R=4 3.反函数或逆映射反函数或逆映射例例 设设 z
3、=w2 则称则称 为为z=w2的反函数或逆映射的反函数或逆映射为多值函数为多值函数,2支支.定义定义 设设 w=f(z)的定义集合为的定义集合为G,函数值集合为函数值集合为G*则称则称z=(w)为为w=f(z)的反函数(的反函数(逆映射逆映射).例例 已知映射已知映射w=z3,求区域,求区域 0argz 在平面在平面w上的象。上的象。例例&1.函数的极限函数的极限&2.运算性质运算性质&3.函数的连续性函数的连续性4 复变函数的极限与连续性复变函数的极限与连续性1.函数的极限函数的极限定义定义uv(w)oAxy(z)o几何意义几何意义:当变点当变点z一旦进一旦进入入z0 的充分小去的充分小去心
4、邻域时心邻域时,它的象它的象点点f(z)就落入就落入A的的一个预先给定的一个预先给定的邻域中邻域中A (1)(1)意义中意义中 的方式是任意的的方式是任意的.与一元实变函数相比较要求更高与一元实变函数相比较要求更高.(2)A是复数是复数.2.运算性质运算性质复变函数极限与其实部和虚部极限的关系:复变函数极限与其实部和虚部极限的关系:定理定理1(3)若若f(z)在在 处有极限处有极限,其极限其极限是唯一的是唯一的.定理定理2A 以上定理用极限定义证以上定理用极限定义证!例例1例例2例例33.函数的连续性函数的连续性定义定义定理定理3例例4 证明证明f(z)=argz在原点及负实轴上不连续。在原点
5、及负实轴上不连续。证明证明xy(z)ozz 定理定理4 连续函数的和、差、积、商连续函数的和、差、积、商(分母不为分母不为0)仍为连续函数仍为连续函数;连续函数的复合函数仍为连续函数。连续函数的复合函数仍为连续函数。有界性:有界性:第二章第二章第二章第二章 解析函数解析函数解析函数解析函数&第一节第一节第一节第一节 解析函数的概念解析函数的概念解析函数的概念解析函数的概念&第二节第二节第二节第二节 函数解析的充要条件函数解析的充要条件函数解析的充要条件函数解析的充要条件&第三节第三节第三节第三节 初等函数初等函数初等函数初等函数&1.1.复变函数的导数定义复变函数的导数定义复变函数的导数定义复
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复变函数映射 函数 映射 PPT 课件
限制150内