巨正则分布的热力学热力学PPT讲稿.ppt
《巨正则分布的热力学热力学PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《巨正则分布的热力学热力学PPT讲稿.ppt(97页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、巨正则分布的热力学热力学第1页,共97页,编辑于2022年,星期六知识回顾知识回顾Chap.7 Chap.7 玻尔兹曼统计玻尔兹曼统计粒子的配分函数粒子的配分函数Z1Z1基本热力学函数、内能、物态基本热力学函数、内能、物态方程、熵、自由能方程、熵、自由能系统的全部平衡性质系统的全部平衡性质第2页,共97页,编辑于2022年,星期六知识回顾知识回顾满足经典极限条件的玻满足经典极限条件的玻色和费米系统色和费米系统第3页,共97页,编辑于2022年,星期六知识回顾知识回顾Chap.8 Chap.8 玻色统计和费米统计玻色统计和费米统计8.1 8.1 热力学量的统计表达式热力学量的统计表达式抛弃粒子轨
2、道的概念抛弃粒子轨道的概念(1 1)微观粒子的能量和动量是不连续的)微观粒子的能量和动量是不连续的(2 2)微观全同粒子不可分辨)微观全同粒子不可分辨(3 3)微观粒子的行为要满足不确定关系)微观粒子的行为要满足不确定关系(4 4)费米子受泡利不相容原理的限制)费米子受泡利不相容原理的限制第4页,共97页,编辑于2022年,星期六知识回顾:玻色和费米系统的巨配分函数和热力学公式知识回顾:玻色和费米系统的巨配分函数和热力学公式Bose Bose 系统系统FermiFermi系统系统第5页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.2 8.2弱简并理想玻色和费米气体弱简并理想玻色和
3、费米气体Chap.8 Chap.8 玻色统计和费米统计玻色统计和费米统计Chap.7Chap.7中的经典极限条件(非简并条件):中的经典极限条件(非简并条件):所谓所谓“弱简并条件弱简并条件”即气体的即气体的很大很大很小,但不可忽略!很小,但不可忽略!第6页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.2 8.2弱简并理想玻色和费米气体弱简并理想玻色和费米气体BoseBose气体气体FermiFermi气体气体BoltzmannBoltzmann气体气体弱简并条件下的系统弱简并条件下的系统内能的差异内能的差异(1 1)第一项是根据)第一项是根据BoltzmannBoltzmann
4、分布得到的内能分布得到的内能(2 2)第二项是量子统计关联所导致的附加内能,)第二项是量子统计关联所导致的附加内能,弱简并的情况下附加内能很小;弱简并的情况下附加内能很小;Fermi Fermi气体附加内能为正气体附加内能为正 等效的排斥作用等效的排斥作用 Bose Bose 气体附加内能为负气体附加内能为负 -等效的吸引作用等效的吸引作用第7页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.3 Bose Einstein 8.3 Bose Einstein 凝聚凝聚1.1.理想理想BoseBose气体的化学势气体的化学势2.2.临界温度(凝聚温度):临界温度(凝聚温度):TTc时
5、,就有宏观量级的粒子在能级时,就有宏观量级的粒子在能级=0凝聚,这一凝聚,这一现象称为现象称为Bose-EinsteinBose-Einstein凝聚,简称凝聚,简称BoseBose凝聚。凝聚。5.Bose-Einstein 5.Bose-Einstein 凝聚的条件:凝聚的条件:4.Bose-Einstein 4.Bose-Einstein 凝聚凝聚BoseBose凝聚体的凝聚体的E=0;P动量动量=0;S=0;P压强压强=0 3.3.T T 0KT0K时自由电时自由电子的性质子的性质第12页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.58.5金属中的自由电子气体金属中的自由
6、电子气体 T T=0K=0K下自由电子的性质下自由电子的性质FermiFermi能级能级0K0K时电子气体的压强为时电子气体的压强为3.8103.8101010帕。这是一个极大的数帕。这是一个极大的数值它是泡利不相容原理和电子气体具有高密度的结值它是泡利不相容原理和电子气体具有高密度的结果常称为电子气体的简并压果常称为电子气体的简并压.第13页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.58.5金属中的自由电子气体金属中的自由电子气体T0K0K时电子气体热容量的估计(能量均分定理,时电子气体热容量的估计(能量均分定理,N N有效有效)T0K0K时金属中自由电子的性质时金属中自由
7、电子的性质金属中自由电子对热容量的贡献约为:金属中自由电子对热容量的贡献约为:第14页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.58.5金属中的自由电子气体金属中的自由电子气体3.3.T T0K0K时自由电子气体热容量的定量计算时自由电子气体热容量的定量计算内能内能U U在体积在体积V V内,在内,在-+d -+d 能量范围内的电子数为:能量范围内的电子数为:电子数电子数N N将将FermiFermi积分积分求出后得:求出后得:进一步化简得:进一步化简得:第15页,共97页,编辑于2022年,星期六知识回顾:知识回顾:8.58.5金属中的自由电子气体金属中的自由电子气体T0K
8、T0K时,自由电子气体热容量时,自由电子气体热容量与估算的结果仅与估算的结果仅有系数的差异有系数的差异根据系综理论根据系综理论足够低的温度下电子热容量将大足够低的温度下电子热容量将大于离子振动的热容量而成为对金于离子振动的热容量而成为对金属热容量的主要贡献。属热容量的主要贡献。电子电子离子振动离子振动第16页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理Chap.9 Chap.9 系综理论系综理论回顾:近独立粒子平衡态统计物理的普遍理论平衡态统计物理的普遍理论系综理论系综理论应用系综理论可以研究应用系综理论可以研究互作用粒子互作用粒子组成的系统组成的系统
9、9.1 9.1 相空间相空间 刘维尔定理刘维尔定理如何描述系统的微观(力学)运动状态如何描述系统的微观(力学)运动状态?第17页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理一、相空间一、相空间如果系统包含多种粒子,第如果系统包含多种粒子,第i 种粒子的自由度种粒子的自由度为为ri,粒子数为,粒子数为Ni,则系统的自由度为:,则系统的自由度为:说明:说明:a a)当粒子间的相互作用不能忽略时,应把系统当作一个整体)当粒子间的相互作用不能忽略时,应把系统当作一个整体考虑考虑;b b)本节主要讨论经典描述)本节主要讨论经典描述如何描述系统的微观(力学)运动状
10、态如何描述系统的微观(力学)运动状态?假设系统由假设系统由N N 个全同粒子组成,粒子的自由度为个全同粒子组成,粒子的自由度为r则:系统的自由度为则:系统的自由度为f=Nr第18页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理(1 1)相空间()相空间(空间)空间)系统在某一时刻的运动状态:系统在某一时刻的运动状态:f 个广义坐标个广义坐标系统在任一时刻的的微观运动状态系统在任一时刻的的微观运动状态 :以以 共共2 2f个变量为直角坐标个变量为直角坐标构成一个构成一个2 2f 维空间维空间,称为相空间称为相空间(空间空间)f 个广义动量个广义动量可用相空
11、间中的一点表示,称为系统运动状态的代表点。可用相空间中的一点表示,称为系统运动状态的代表点。第19页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理(2 2)系统的运动状态随时间的演化)系统的运动状态随时间的演化 系统的运动状态随时间而变,遵从系统的运动状态随时间而变,遵从哈密顿正则方程哈密顿正则方程(9.1.19.1.1)保守力系保守力系第20页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理若若H H不显含不显含t t,则,则H Hh h(积分常数)(积分常数)稳定约束的情况下:稳定约束的情况下:第21页,共97页
12、,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理孤立系统孤立系统:哈密顿量就是它的能量,包括哈密顿量就是它的能量,包括1)1)粒子的动能粒子的动能;2)2)粒子相互作用的势能粒子相互作用的势能;3)3)粒子在保守力场中的势能粒子在保守力场中的势能它是它是 的函数的函数,存在外场时还是外场存在外场时还是外场参量的函数参量的函数,不是时间不是时间t t 的显函数。的显函数。第22页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理系统在相空间中的运动轨迹系统在相空间中的运动轨迹当系统的运动状态随时间变化时,代表点相应地在当系统的运动状
13、态随时间变化时,代表点相应地在相空间中移动,其轨道由式相空间中移动,其轨道由式(9.1.1)(9.1.1)确定确定轨道的运动方向完全由轨道的运动方向完全由(qi和和pi)决定决定哈密顿量和它的微商是单值函数哈密顿量和它的微商是单值函数经过相空间任何一点轨迹只能有一条经过相空间任何一点轨迹只能有一条 系统从某一初态出发,代表点在相空间的轨道或者系统从某一初态出发,代表点在相空间的轨道或者是一条封闭曲线,或者是一条自身永不相交的曲线。是一条封闭曲线,或者是一条自身永不相交的曲线。当系统从不同的初态出发,代表点沿相空间中不同当系统从不同的初态出发,代表点沿相空间中不同的轨道运动时,不同的轨道也互不相
14、交。的轨道运动时,不同的轨道也互不相交。(9.1.19.1.1)第23页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理能量曲面能量曲面:由于孤立系统的能量由于孤立系统的能量E E 不随时间改变,系统的广不随时间改变,系统的广义坐标和动量必然满足条件:义坐标和动量必然满足条件:构成相空间中的一个曲面,称为能量曲面。构成相空间中的一个曲面,称为能量曲面。孤立系统的运动状态的代表点位于能量曲面之上孤立系统的运动状态的代表点位于能量曲面之上.第24页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理二、刘维尔定理二、刘维尔定理
15、 (Liouvilles theorem)1 1、设想大量结构完全相同的系统,各自从其初态、设想大量结构完全相同的系统,各自从其初态 出发独立地沿着正则方程出发独立地沿着正则方程(9.1.1)(9.1.1)所规定的轨道运动所规定的轨道运动.(9.1.19.1.1)这些系统的运动状态的这些系统的运动状态的代表点代表点将在相空间中形成将在相空间中形成一个分布一个分布相空间中的一个体积元相空间中的一个体积元时刻时刻t t,运动状态在,运动状态在dd内的代表点数:内的代表点数:第25页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理所设想的系统的总数所设想的系统的
16、总数 N N2 2、刘维尔定理及其证明、刘维尔定理及其证明1)1)刘维尔定理刘维尔定理如果一个代表点沿着正则方程所确定的轨道在相如果一个代表点沿着正则方程所确定的轨道在相空间中运动,其邻域的代表点密度是不随时间改空间中运动,其邻域的代表点密度是不随时间改变的常数。变的常数。2)2)刘维尔定理的证明刘维尔定理的证明第26页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理 证明证明 现在考虑代表点密度现在考虑代表点密度 随时间随时间t 的变化的变化当时间由当时间由t 变到变到t+dt 时,时,在在 处的代表点将运动到处的代表点将运动到这里这里现在要证明现在要证
17、明全微分全微分第27页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理1)1)考虑相空间中一个固定的体积元考虑相空间中一个固定的体积元边界是边界是2 2f 对平面对平面时刻时刻t,d内的代表点数内的代表点数时刻时刻t+dt,d内的代表点数内的代表点数经经d dt 时间后,时间后,d d内代表点数的增加内代表点数的增加第28页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理代表点需要通过代表点需要通过2 2f 对边界平面才能进入或走出体积元对边界平面才能进入或走出体积元d2)2)现在计算通过平面现在计算通过平面qi进入进
18、入d的代表点数的代表点数d在平面在平面qi上的边界面积上的边界面积在在dt 时间内通过时间内通过dA dA 进入进入d 的代表点必须位于以的代表点必须位于以dAdA为为底、以底、以 为高的柱体内为高的柱体内柱体内的代表点数是柱体内的代表点数是在在dt 时间内通过平面时间内通过平面qi+d qi走出走出d的代表点数的代表点数第29页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理2)2)通过这对平面净进入通过这对平面净进入d 的的代表点数是:代表点数是:走进走进走出走出类似的讨论可得,在类似的讨论可得,在dt 时间内通过一对平面时间内通过一对平面pi和和pi
19、+d pi净进入净进入d的代表点数为的代表点数为第30页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理在在dt 时间内通过时间内通过d 边界进入边界进入d 内的代表点数为内的代表点数为第31页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理刘维尔定理刘维尔定理 Liouvilles theorem第32页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维尔定理刘维尔定理刘维尔定理 的另一形式的另一形式第33页,共97页,编辑于2022年,星期六9.1 9.1 相空间相空间 刘维尔定理刘维
20、尔定理说明说明:1 1)对于对于t -t保持不变保持不变刘维尔定理是可逆的刘维尔定理是可逆的2)2)刘维尔定理完全是力学规律的结果,其中未引入刘维尔定理完全是力学规律的结果,其中未引入任何统计的概念;任何统计的概念;3)3)根据量子力学也可以证明刘维尔定理。根据量子力学也可以证明刘维尔定理。第34页,共97页,编辑于2022年,星期六一、相空间一、相空间若系统包含多种粒子,第若系统包含多种粒子,第i 种粒子的自由度种粒子的自由度为为ri,粒子数为,粒子数为Ni,则系统的自由度为:,则系统的自由度为:9.1 9.1 小结小结9.19.1相空间相空间 刘维尔定理刘维尔定理小结小结以以 共共2 2f
21、个变量为坐标构成一个个变量为坐标构成一个2 2f 维空维空间间,称为相空间称为相空间(空间空间)系统在某一时刻的运动状态:系统在某一时刻的运动状态:可用相空间中的一点表示,称为系统运动状态的代表点。可用相空间中的一点表示,称为系统运动状态的代表点。(2 2)系统的运动状态随时间的演化)系统的运动状态随时间的演化 系统的运动状态随时间而变,遵从系统的运动状态随时间而变,遵从哈密顿正则方程哈密顿正则方程(9.1.19.1.1)(1 1)相空间()相空间(空间)空间)当系统的运动状态随时间变化时,代表点相应地在当系统的运动状态随时间变化时,代表点相应地在相空间中移动,其轨道由式相空间中移动,其轨道由
22、式(9.1.1)(9.1.1)确定确定第35页,共97页,编辑于2022年,星期六刘维尔定理刘维尔定理 (Liouvilles theorem)设想大量结构完全相同的系统,各自从其初态设想大量结构完全相同的系统,各自从其初态出发独立地沿着正则方程出发独立地沿着正则方程(9.1.1)(9.1.1)所规定的轨道运动所规定的轨道运动.(9.1.19.1.1)这些系统的运动状态的这些系统的运动状态的代表点代表点将在相空间中形成一个将在相空间中形成一个分布分布9.1 9.1 小结小结2 2、刘维尔定理、刘维尔定理 如果一个代表点沿着正则方程所确定的轨道如果一个代表点沿着正则方程所确定的轨道在相空间中运动
23、,其邻域的代表点密度是不随时在相空间中运动,其邻域的代表点密度是不随时间改变的常数。间改变的常数。d表示时刻表示时刻t,运动状态运动状态在在d内的代表点数内的代表点数第36页,共97页,编辑于2022年,星期六9.2 9.2 微正则分布微正则分布9.2 9.2 微正则分布微正则分布宏观系统,表面分子数远小于总分子宏观系统,表面分子数远小于总分子数,系统与外界的相互作用很弱。数,系统与外界的相互作用很弱。统计物理学统计物理学:研究系统在给定宏观条件下的宏观性质。研究系统在给定宏观条件下的宏观性质。例如例如:如果研究的是一个孤立系统,给定的宏观条件如果研究的是一个孤立系统,给定的宏观条件就是具有确
24、定的粒子数就是具有确定的粒子数N、体积、体积V 和能量和能量E。1 1 统计系综统计系综1)1)关于孤立系统能量的讨论:关于孤立系统能量的讨论:实际上系统通过其表面分子不可避免地与外界发生实际上系统通过其表面分子不可避免地与外界发生作用,使孤立系统的能量不具有确定的数值作用,使孤立系统的能量不具有确定的数值E而是而是在在E 附近的一个狭窄的范围内,或者说在附近的一个狭窄的范围内,或者说在E E到到E+E之间之间E/E1 1第37页,共97页,编辑于2022年,星期六 这微弱的相互作用这微弱的相互作用E 对系统微观状态的变化却产对系统微观状态的变化却产生巨大的影响:生巨大的影响:在给定的宏观条件
25、下,宏观量是相应微观量在一切在给定的宏观条件下,宏观量是相应微观量在一切可能的满足给定宏观条件的微观状态上的平均值。可能的满足给定宏观条件的微观状态上的平均值。系统从某一初态出发沿正则方程确定的轨道运动,系统从某一初态出发沿正则方程确定的轨道运动,经过一定的时间后,外界的作用使系统跃迁到经过一定的时间后,外界的作用使系统跃迁到E E到到E EE内的另一状态而沿正则方程确定的另一轨道运动。内的另一状态而沿正则方程确定的另一轨道运动。这样的过程不断发生,使系统的微观状态发生极其复杂这样的过程不断发生,使系统的微观状态发生极其复杂的变化。的变化。2)2)宏观量与微观量的关系宏观量与微观量的关系9.2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正则 分布 热力学 PPT 讲稿
限制150内