第三章解线性方程组的迭代法.ppt
《第三章解线性方程组的迭代法.ppt》由会员分享,可在线阅读,更多相关《第三章解线性方程组的迭代法.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第3 3章章 解线性方程组的迭代法解线性方程组的迭代法 迭代法的基本思想是,把n元线性方程组(3.1)或 Ax=b改写成等价的方程组 ,或x=Mx+g 迭代法是从某一取定的初始向量x x(0)出发,按照一个适当的迭代公式,逐次计算出向量x x(1),x x(2),使得向量序列x x(k)收敛于方程组的精确解.迭代法是一类逐次近似的方法.其优点是,算法简便,程序易于实现.由此建立方程组的迭代公式 x(k+1)=Mx(k)+g,k=0,1,2,(3.2)其中M称为迭代矩阵迭代矩阵。对任意取定的初始向量x x(0),由(3.2)式可逐次算出迭代向量x x(k),k=1,2,如果向量序列x(k)收敛
2、于x*,由(3.2)式可得 x*=Mx*+g 从而x x*是方程组x=Mx+g的解,也就是方程组Ax=b的解.这种求解线性方程组的方法称为迭代法迭代法 ,若迭代序列x(k)收敛,则称迭代法收敛,否则称迭代法发散.1 Jacobi迭代法和迭代法和Gauss-Seidel迭代法迭代法 Jacobi方法是由方程组(3.1)中第k个方程解出x x(k),得到等价方程组:从而得迭代公式式(3.3)称为JacobiJacobi迭代法迭代法,简称为J J迭代法迭代法.,则J迭代法可写成 x x(k+1)=BxBx(k)+g g k=0,1,2,可见,J J迭代法的迭代矩阵为若记 J J法也记为G-SG-S迭
3、代法也可记为式(3.4)称为Gauss-SeidelGauss-Seidel迭代法迭代法,简称为G-SG-S迭代法迭代法.若在J J迭代法中,充分利用新值,则可以得到如下的迭代公式方程组的精确解为x x*=(1,1,1)T.解解 J J迭代法计算公式为例例1 用J法和G-S法求解线性方程组取初始向量x x(0)=(0,0,0)T,迭代可得计算结果列表如下:可见,迭代序列逐次收敛于方程组的解,而切迭代7次得到精确到小数点后两位的近似解.kx1(k)x2(k)x3(k)x(k)-x*0123456701.41.110.9290.99061.011591.0002510.998236400.51.2
4、01.0550.96450.99531.0057951.000125501.41.110.9290.99061.011591.0002510.998236410.50.20.0710.03550.011590.0057950.0017636 G-SG-S迭代法的计算公式为:同样取初始向量x x(0)=(0,0,0)T,计算结果为 由计算结果可见,G-S迭代法收敛较快.取精确到小数点后两位的近似解,G-S迭代法只需迭代3次,而J迭代法需要迭代7次.kx1(k)x2(k)x3(k)x(k)-x*012301.41.06340.995104400.781.020480.9952756801.0260
5、.9875161.0019068610.40.06340.0048956 为了进一步研究,从矩阵角度来讨论上述迭代法.对线性方程组AxAx=b b,记 D D=diag(a11,a22,ann)则有 A A=D D-L L-U U于是线性方程组 AxAx=b b 可写成 (D D-L L-U U)x x=b b等价于 DxDx=(L L+U U)x x+b b 或或 x x=D D-1(L L+U U)x x+D D-1b b 由此建立J J迭代法迭代公式 x x(k+1)=D D-1(L L+U U)x x(k)+D D-1b b k=0,1,2,或写成 x x(k+1)=BxBx(k)+g
6、 g k=0,1,2,其中G-SG-S迭代法迭代公式可写成 x x(k+1)=D D-1LxLx(k+1)+D D-1UxUx(k)+D D-1b b 讨论迭代法 x(k+1)=Mx(k)+g k=0,1,2,DxDx(k+1)=LxLx(k+1)+UxUx(k)+b b (D D-L L)x x(k+1)=UxUx(k)+b b x x(k+1)=(D D-L L)-1UxUx(k)+(D D-L L)-1b b 所以G-SG-S迭代法可以写成 x x(k+1)=GxGx(k)+g g k=0,1,2,其中 G G=(D D-L L)-1U U,g g=(D D-L L)-1b b 2 2
7、迭代法的收敛性迭代法的收敛性的收敛性.记误差向量e e(k)=x x(k)-x x*,则迭代法收敛就是e e(k)0 0.由于 x(k+1)=Mx(k)+g k=0,1,2,x*=Mx*+g k=0,1,2,所以 e(k+1)=Me(k),k=0,1,2,递推可得 e(k)=Mke(0),k=0,1,2,可见,当k时,e e(k)0 0 Mk O O.对任意初始向量x x(0),迭代法收敛(M)1.定理定理3.1 证证 若Mk0,则k(M)=(Mk)Mk0,所以(M)1.若(M)0,使得(M)+1.则MkMk(M)+)k 0.若若M1,则对任意x x(0),迭代法收敛,而且 定理定理3.2 证
8、证 由于 x(k+1)=Mx(k)+g x(k)=Mx(k-1)+g x*=Mx*+g所以 x(k+1)-x(k)=M(x(k)-x(k-1),x(k+1)x*=M(x(k)x*)于是有 x(k+1)-x(k)Mx(k)-x(k-1)x(k+1)x*Mx(k)x*x(k+1)-x(k)=(x(k+1)x*)-(x(k)x*)x(k)x*-x(k+1)x*x(k+1)-x(k)=(x(k+1)x*)-(x(k)x*)x(k)x*-x(k+1)x*(1-M)x(k)x*所以 定理3.2只是收敛的充分条件,并不必要,如则M1=1.2,M=1.3,M2=1.09,MF=1.17但(M)=0.81,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 解线性方程组的迭代法 第三 线性方程组 迭代法
限制150内