第二章-第3讲-函数的奇偶性与周期性课件.ppt
《第二章-第3讲-函数的奇偶性与周期性课件.ppt》由会员分享,可在线阅读,更多相关《第二章-第3讲-函数的奇偶性与周期性课件.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考纲要求考纲研读1.结合具体函数,了解函数奇偶性的含义2会运用函数图象理解和研究函数的性质.1.以函数的奇偶性与周期性为载体求函数值、比较函数值的大小、解函数不等式及求参数的取值范围是本节考查的重点2研究函数性质时可以将抽象的函数具体化、直观化(利用图象).第3讲函数的奇偶性与周期性1函数的奇偶性的定义(1)对于函数 f(x)的定义域内任意一个 x,都有_或_,则称 f(x)为奇函数奇函数的图象关于_对称(2)对于函数 f(x)的定义域内任意一个 x,都有_或_,则称 f(x)为偶函数偶函数的图象关于_轴对称(3)通常采用图象或定义判断函数的奇偶性具有奇偶性的函数,其定义域关于原点对称(也就是
2、说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)原点f(x)f(x)f(x)f(x)0f(x)f(x)0yf(x)f(x)2函数的周期性的定义对于函数 f(x),如果存在一个_T,使得定义域内的每一个 x 值,都满足_,那么函数 f(x)就叫做周期函数,非零常数 T 叫做这个函数的_非零常数f(xT)f(x)周期DA奇函数B偶函数C既是奇函数又是偶函数D非奇非偶函数)C2下列函数中,在其定义域内是奇函数的是(CAy 轴对称C坐标原点对称B直线 yx 对称D直线 yx 对称4(2011年浙江)若函数f(x)x2|xa|为偶函数,则实数a_.解析:f(x)为偶函数,f(x)f(x)即x2
3、|xa|(x)2|xa|xa|xa|,a0.05设 f(x)是(,)上的奇函数,f(x2)f(x),当0 x1 时,f(x)x,则 f(7.5)_.0.5 解析:由f(x2)f(x)得f(x4)f(x),故f(x)是以4为周期的函数故f(7.5)f(0.58)f(0.5)又f(x)是(,)上的奇函数,且当0 x1时,f(x)x,所以f(7.5)f(0.5)f(0.5)0.5.考点1 判断函数的奇偶性例1:判断下列函数的奇偶性:解:(1)函数的定义域为x(,),关于原点对称f(x)|x1|x1|x1|x1|(|x1|x1|)f(x),f(x)|x1|x1|是奇函数(2)此函数的定义域为x|x0
4、由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数(3)去掉绝对值符号,根据定义判断故f(x)的定义域为1,0)(0,1,关于原点对称,且有x20.故 f(x)为奇函数(4)函数f(x)的定义域是(,0)(0,)当x0 时,x0,f(x)(x)1(x)x(1x)f(x)(x0)当 x0 时,x0,f(x)x(1x)f(x)(x0)故函数f(x)为奇函数(5)此函数的定义域为1,1,且f(x)0.可知图象既关于原点对称、又关于 y 轴对称,故此函数既是奇函数又是偶函数f(x)是奇函数(1)函数的奇偶性是函数的一个整体性质,定义域具有对称性(即若奇函数或偶函数的定义域为D,则 xD 时都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 函数 奇偶性 周期性 课件
限制150内