离心泵基本知识汇总课件.ppt
《离心泵基本知识汇总课件.ppt》由会员分享,可在线阅读,更多相关《离心泵基本知识汇总课件.ppt(130页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 目录一、泵的分类二、离心泵的工作原理三、离心泵的结构和组成四、离心泵的日常检查内容五、离心泵常见故障及处理六、离心泵的检修要点一般情况下,液体只能从高处自动流向低处,从高压设备内自动流向低压设备内。如果把低处的液体送往高处,把低压设备内的液体送往高压设备内,就必须给这些液体提供一定的能量才能达到此目的。我们通常把能给液体提供能量的设备叫泵。根据泵的工作原理和结构分类:根据泵的工作原理和结构分类:叶片式泵叶片式泵叶片式泵叶片式泵(离心泵离心泵(单吸泵、双吸泵;单级泵、多级泵;蜗(单吸泵、双吸泵;单级泵、多级泵;蜗壳式泵、分段式泵;立式泵、卧式泵;屏蔽泵、磁力驱动泵;壳式泵、分段式泵;立式泵、卧
2、式泵;屏蔽泵、磁力驱动泵;高速泵)、旋涡泵(单级泵、多级泵;离心旋涡泵)、轴流高速泵)、旋涡泵(单级泵、多级泵;离心旋涡泵)、轴流泵、混流泵);泵、混流泵);容积式泵容积式泵容积式泵容积式泵(往复泵(电动泵(柱塞泵、隔膜泵;计量泵)、(往复泵(电动泵(柱塞泵、隔膜泵;计量泵)、蒸汽泵)、转子泵(齿轮泵、螺杆泵、罗茨泵、滑片泵);蒸汽泵)、转子泵(齿轮泵、螺杆泵、罗茨泵、滑片泵);其他类型泵(喷射泵、空气升液泵、电磁泵、软管泵)。其他类型泵(喷射泵、空气升液泵、电磁泵、软管泵)。根据化工生产工艺流程分类:进料泵、回流泵、塔底泵、循环泵、产品泵、注入泵、补给泵、冲洗泵、排污泵、燃料油泵、润滑油和封
3、油泵。一、泵的分类离心泵的型号离心泵的型号型 号泵 的 名 称型 号泵 的 名 称ISB或BAD或DGDLYYGFPISO3国际标准型单级单吸离心水泵单级单吸悬臂式离心清水泵多级分段式离心泵多级立式管形离心泵离心式油泵离心式管道油泵耐腐蚀泵屏蔽式离心泵S或shDSKDKDSZFYWWX单级双吸式离心水泵多级分段式首级为双吸叶轮多级中开式离心泵多级中开式首级为双吸叶轮自吸式离心泵耐腐蚀液下式离心泵一般旋涡泵旋涡离心泵1、离心泵的分类按照API610-2003第九版,工业用离心泵分为三类18种。离心泵型式粗分为悬臂式、两端支撑式、立式悬吊式三类。(OH1/OH2)悬臂式离心泵根据介质温度情况轴承支
4、架分无冷、风冷及水冷结构介质需保温时可用壳体保温夹套结构根据介质含固量可选择开式叶轮结构根据介质温度可采用密封箱体保温结构重工位轴系设计可配各种机械密封悬臂式离心泵OH2(OH3)立式管道泵(OH3/OH4/OH5)立式管道泵(BB1)双吸中开泵剖面图双吸叶轮,平衡轴向力,低汽蚀值轴向剖分壳体,无须拆卸进出口管路即可维修稀油润滑,充分冷却轴承轴向剖分轴承箱,转子拆装方便轴可密封,可配各种密封重工位轴承可做接近中心线支承两级大型高温流程泵(BB2型)结构示意图特征:两端支承、径向剖分、两级、双吸(BB3)轴向剖分多级泵)轴向剖分多级泵剖面图流量:2000m3/h 扬程:2000m 温度:200C
5、 压力:25MPa水平中开,多级高压,背对背设计(BB4)节段多级泵剖视图径向剖分,节段式壳体,导叶结构,O形圈密封;壳体底脚支撑或中心支撑轴承重载荷设计,可配风扇冷却或水冷却多级单吸叶轮串联布置平衡鼓结构平衡轴向力稀油润滑的滚动轴承,也可选滑动轴承(BB5)卧式筒型泵剖视图径向剖分,节段式壳体,导叶结构,O形圈密封;壳体中心支撑筒体结构,高压设计,减小温度急剧变化的影响轴承重载荷设计,可配风扇冷却或水冷却平衡鼓结构平衡轴向力稀油润滑的滚动轴承,也可选滑动轴承多级单吸叶轮串联布置,叶轮可以独立固定(BB5)卧式筒型泵剖视图高压的背对背设计,抽芯式设计,锻造筒体,强制润滑系统(VS2)液下泵剖面
6、图双吸式叶轮,结合双流道蜗壳设计,对称结构,运转平稳滚动轴承可脂润滑或油润滑可配填料密封或机械密封螺纹接轴,安全可靠,可反转设计滑动轴承,介质本身自冲洗护管结构,滑动轴承外冲洗混流式叶轮,加空间导叶式壳体,适合大流量低扬程工况(VS4)液下泵剖面图单级单吸叶轮,并有多种叶轮形式可供选择液下紧凑型结构用于高温和空间有限的场合转子部件多点支撑,导轴承可外冲洗或自冲洗机械密封+油润滑滚动轴承+加长联轴节V型环密封或填料密封+脂润滑滚动轴承+联轴器连接螺柱+接轴键+接轴套型式的接轴方式,用于常温(VS5)液下泵剖面图l 悬臂式结构l 液下无轴承l 刚性轴设计l 口环径向密封l 长度2ml 适用于磨蚀性
7、强的工况(VS6)立式筒型泵剖面图多级叶轮串联布置,径向导叶加节段式壳体设计,O型圈密封标准筒袋外壳仅承受入口压力平衡鼓装置平衡轴向力,使轴封仅承受入口压力自动循环油润滑轴承部件,可整体拆卸分半式定位环加分半式接轴套型式的接轴方式滑动轴承介质本身自冲洗流量:1800m3/h扬程:800m温度:-180 +180压力:10.0MPa(VS6)立式筒型泵轴承密封剖面图(VS6)立式筒型泵管线图排气至吸入罐;排液PLAN13+53;二、离心泵的工作原理 离心泵主要由叶轮、轴、泵壳、轴封及密封环等组成。一般离心泵启动前泵壳内要灌满液体,当原动机带动泵轴和叶轮旋转时,液体一方面随叶轮作圆周运动,一方面在
8、离心力的作用下自叶轮中心向外周抛出,液体从叶轮获得了压力能和速度能。当液体流经涡壳到排液口时,部分速度能将转变为静压力能。在液体自叶轮抛出时,叶轮中心部分造成低压区,与吸入液面的压力形成压力差,于是液体不断地被吸入,并以一定的压力排出。离心泵工作流程:离心泵工作流程:产生产生产生产生离心力离心力离心力离心力液体甩出,叶轮中心形成液体甩出,叶轮中心形成液体甩出,叶轮中心形成液体甩出,叶轮中心形成低压低压低压低压驱动机带动驱动机带动叶轮高速旋转叶轮高速旋转叶轮带动叶轮带动液体高速旋转液体高速旋转液体液体获得能量获得能量(压力能、速(压力能、速度能增加)度能增加)吸入罐与泵之间产生吸入罐与泵之间产生
9、吸入罐与泵之间产生吸入罐与泵之间产生压差压差压差压差吸入液体,实现吸入液体,实现吸入液体,实现吸入液体,实现连续工作连续工作连续工作连续工作输送液体输送液体输送液体输送液体离心泵工作动画演示离心泵工作动画演示泵的性能参数流量流量QQ;泵在单位时间内由泵出口排除液体的体积量,单位泵在单位时间内由泵出口排除液体的体积量,单位mm3 3/h/h或或mm3 3/s/s扬程扬程H H;单位重量的液体通过泵后获得的能量,即排出液体;单位重量的液体通过泵后获得的能量,即排出液体的液柱高度,单位的液柱高度,单位mm转速转速n n;泵轴单位时间内的转数,单位;泵轴单位时间内的转数,单位rpmrpm功率和效率功率
10、和效率;有效功率;有效功率PuPu是指单位时间内泵输送出的液体获是指单位时间内泵输送出的液体获得的有效能量,也称输出功率。轴功率得的有效能量,也称输出功率。轴功率PaPa是指单位时间内由是指单位时间内由原动机传到泵轴上的功,也称输入功率,单位原动机传到泵轴上的功,也称输入功率,单位KWKW。效率是。效率是泵的有效功率与轴功率之比。泵的有效功率与轴功率之比。汽蚀余量汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,
11、汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力(气蚀时的真空压力)的富余能量。单位用米标注,用(NPSH)r越小抗汽蚀性能越好;泵的抽空泵启动前没灌泵、进空气、液体不满或介质大量汽化,这种情况下,泵出口压力近于零或接近泵入口压力,泵内压力降低。这叫抽空。抽空会让泵内接触零件和机械摩擦副发生干摩擦或半干摩擦,加剧磨损或零件移位而损坏泵及密封。泵的汽蚀 离心泵运转时,流体的压力随着从泵入口到叶轮入口而下降,在叶离心泵运转时,流体的压力随着从泵入口到叶轮入口而下降,在叶片附近,液体压力最低。此后,由于叶轮对液体做功,压力很快上升。片附近,液体压力最低。此后,由于叶轮对液体做功,压力很快上升
12、。当叶轮叶片入口附近压力小于等于液体输送温度下的饱和蒸汽压力时,当叶轮叶片入口附近压力小于等于液体输送温度下的饱和蒸汽压力时,液体就汽化液体就汽化。同时,还可能有溶解在液体内的气体溢出,它们形成许多。同时,还可能有溶解在液体内的气体溢出,它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡会凝结溃灭形成空穴。瞬间内周围的液体以极泡内的汽化压力,则汽泡会凝结溃灭形成空穴。瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然剧增。高的速度向空穴冲来,造成液体互相撞击,使局
13、部的压力骤然剧增。这不仅阻碍流体的正常流动,更为严重的是,如果这些汽泡在叶轮这不仅阻碍流体的正常流动,更为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数小弹头一样,连续地打击金属表面,其壁面附近溃灭,则液体就像无数小弹头一样,连续地打击金属表面,其撞击频率很高(有的可达撞击频率很高(有的可达20003000Hz20003000Hz),金属表面会因冲击疲劳而剥),金属表面会因冲击疲劳而剥裂。若汽泡内夹杂某些活性气体(如氧气等),他们借助汽泡凝结时放裂。若汽泡内夹杂某些活性气体(如氧气等),他们借助汽泡凝结时放出的能量(局部温度可达出的能量(局部温度可达200300200300),还会形
14、成热电偶并产生电解,),还会形成热电偶并产生电解,对金属起电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液对金属起电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击,形成高压、高温、高频率的冲击载荷,造成金属体汽化、凝结、冲击,形成高压、高温、高频率的冲击载荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。离心泵产生汽蚀的原因离心泵产生汽蚀的原因1、被输送的介质温度过高,压力过低;2、水池液位过低,有气体被吸入;3、泵的安装高度过高;4、流速和吸入管路上的阻力太大;5、吸入管道、压兰(指不带液封的)密封不
15、好,有空气进入。6、流量过大,也就是说出口阀门开的太大汽蚀的后果汽蚀的后果汽蚀使过流部件被剥蚀破坏汽蚀使过流部件被剥蚀破坏通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延至叶轮出口。起初是金属表面出现麻点,继而表面呈现槽沟状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖板穿孔,甚至叶轮破裂,造成严重事故。因而汽蚀严重影响到泵的安全运行和使用寿命。汽蚀使泵的性能下降汽蚀使泵的性能下降汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的性能下降,严重时会使液流中断无法工作。汽蚀使泵产生噪音和振动汽蚀使泵产生噪音和振动气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率的噪音。严重时可以听到泵
16、内有“噼啪”的爆炸声,同时引起机组的振动。而机组的振动又进一步足使更多的汽泡产生和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不得不停机,否则会遭到破坏。离心泵最易发生气蚀的部位有:a.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧;b.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧;c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧;d.多级泵中第一级叶轮防抽空和汽蚀办法:1、稳定工艺操作条件泵的吸入管径应适当加大并尽量减少阻力损失;灌注高度要足够;吸入管路应防止气体的留存;一旦出现气体要能返回塔器,为此在进泵前需加一气体返塔的管线。从工艺操作上,温度宜取下限,压力宜
17、取上限,塔底液面不可过低,泵的流量要适中,尽量减小压力和温度出样较大变化。对入口压力是负压的备用泵入口阀门应关闭。影响压力、温度的因素很多,单纯通过工艺操作避免抽空和汽蚀是不可能的。2、注入式冲洗是解决汽蚀和抽空的有效措施3、从机械密封结构入手 从密封结构无法避免汽蚀的产生,但可以减少汽蚀对密封的危害。减少摩擦热,密封面直径尽量小,宽度尽量窄;选材要有好的自润滑性能和低的摩擦系数。静环采用夹固式或增加限位压板。采用平衡型机封(降PV值降摩擦热,动环限位等)或用其他限位方式。气蚀的解决方案气蚀的解决方案清理进口管路的异物使进口畅通,或者增加管径的大小;降低输送介质的温度;降低安装高度;重新选泵,
18、或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等6使泵体内灌满液体或者在进口增加一缓冲罐就可以解决泵的汽蚀泵的汽蚀泵的汽蚀泵的叶片断裂泵的汽蚀泵的特性曲线反映泵在恒定转速下的各种性能参数。扬程-流量线;轴功率-流量线;效率-流量线;实质上,泵的性能曲线是液体在泵内运动规律的外部实质上,泵的性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。通过泵的任意流量点,都表现形式,通过实测求得。通过泵的任意流量点,都可以在曲线上找出其对应的扬程,功率,效率,汽蚀可以在曲线上找出其对应的扬程,功率,效率,汽蚀余量,这一组参数称为工作状态,简称工作况或工作余量,这一组参数称为工作状态,简称工作况或工
19、作点,离心泵最高效率点得工况称为最佳工况点,最佳点,离心泵最高效率点得工况称为最佳工况点,最佳工况点一般为设计工况点。一般泵的额度参数即设计工况点一般为设计工况点。一般泵的额度参数即设计工况点和最佳工况点相重合或很近。在实践选效率区工况点和最佳工况点相重合或很近。在实践选效率区间运行,既节能,又保证泵的正常工作,因此了解泵间运行,既节能,又保证泵的正常工作,因此了解泵的性能曲线相当重要。的性能曲线相当重要。三、离心泵的结构和组成离心泵主要由吸入排出部分,叶轮和转轴,轴密封,扩压器和蜗壳四部分组成。主要部件有吸入室、排出室、泵壳、扩压器、蜗壳、叶轮、转轴、轴密封、密封环等。泵壳:有轴向剖分式和径
20、向剖分式两种。泵壳承受全部的工作压力和液体的热 负荷。叶轮:唯一的作功部件。主要型式有闭式、开式、半开式三种。闭式叶轮效率较高,开式叶轮效率较低。密封环:作用是防止泵的内泄漏和外泄漏,磨损后可以更换。轴和轴承:泵轴一端固定叶轮,一端装联轴 器。轴承有滚动轴承和滑动轴承。轴封:一般有机械密封和填料密封。离心泵的主要零部件(一一)离离心心泵泵转转子子转子是指离心泵的转动部分,它包括叶轮、泵轴、轴套、轴承等零件;如图19所示图19叶轮是离心泵的做功零件,依靠它高速旋转对液体做功而实现液体的输送,是离心泵重要零件一。叶轮一般由轮毂、叶片和盖板三部分组成。叶轮的盖板有前盖板和后盖板之分,叶轮口侧的盖板称
21、为前盖板,另一侧的盖板称为后盖板。按结构形式,叶轮可分为以下三种。(1)闭式叶轮叶轮的两侧均有盖板,盖板间有46个叶片,如图110(a)所示。闭式叶轮效率较高,应用最广,适用于输送不含固体颗粒及纤维的清洁液体。闭式叶轮有单吸和双吸两种类型。双吸叶轮如图111所示,适用于大流量泵,其抗汽蚀性能较好。(2)半开式叶轮这种叶轮只有后盖板,如图110(b)所示。它适用于输送易于沉淀或含固体悬浮物的液体,其效率介于开式和闭式叶轮之间。(3)开式叶轮如图110(c)。这种叶轮结构简单,制造容易,但效率低,适用输送含较多固体悬浮物或带纤维体。叶轮的材料,主要是根据所输送液体的化学性质、杂质及在离心力作用下的
22、强度来确定。清水离心泵叶轮用铸铁或铸钢制造,输送具有较强腐蚀性的液体时,可用青铜、不锈钢、陶瓷、耐酸硅铁及塑料等制造。叶轮的制造方法有翻砂铸造、精密铸造、焊接、模压等,其尺寸、形状和制造精度对泵的性能影响很大。1叶轮叶轮 结构图2泵轴离心泵的泵轴的主要作用是传递动力,支承叶轮保持在工作位置正常运转。它一端通过联轴器与电动机轴相连,另一端支承着叶轮作旋转运动,轴上装有轴承、轴向密封等零部件。泵轴属阶梯轴类零件,一般情况下为一整体。但在防腐泵中,由于不锈钢的价格较高,有时采用组合件。接触介质的部分用不锈钢,安装轴承及联轴器的部分用优质碳素结构钢,不锈钢与碳钢之间可以采用承插连接或过盈配合连接。由于
23、泵轴用于传递动力,且高速旋转,在输送清水等无腐蚀性介质的泵中,一般用45#钢制造,并且进行调质处理。在输送盐溶液等弱腐蚀性介质的泵中,泵轴材料用40Cr,且调质处理。在防腐蚀泵中,即输送酸、碱等强腐蚀性介质的泵中,泵轴材质一般为1Crl8Ni9或1Crl8Ni9Ti等不锈钢。3轴套轴套的作用是保护泵轴,使填料与泵轴的摩擦转变为填料与轴套的摩擦所以轴套是离心泵的易磨损件。轴套表面一般也可以进行渗碳、渗氮、镀铬、喷涂等处理方法,表面粗糙造度要求一般要达到Ra3.2mRa0.8m。可以降低摩擦系数,提高使用寿命。4轴承轴承起支承转子重量和承受力的作用。离心泵上多使用滚动轴承,其外圈与轴承座孔采用基轴
24、制,内圈与转轴采用基孔制,配合类别国家标准有推荐值,可按具体情况选用。轴承一般用润滑脂和润滑油润滑。2、蜗壳和导轮蜗壳与导轮的作用,一是汇集叶轮出口处的液体,引入到下一级叶轮入口或泵的出口;二是将叶轮出口的高速液体的部分动能转变为静压能。一般单级和中开式多级泵常设置蜗壳,分段式多级泵则采用导轮。蜗壳蜗壳是指叶轮出口到下一级叶轮入口或到泵的出口管之间截面积逐渐增大的螺旋形流道,如图115所示。其流道逐渐扩大,出口为扩散管状。液体从叶轮流出后,其流速可以平缓地降低,使很大一部分动能转变为静压能。蜗壳的优点是制造方便,高效区宽,车削叶轮后泵的效率变化较小。缺点是蜗壳形状不对称,在使用单蜗壳时作用在转
25、子径向的压力不均匀,易使轴弯曲,所以在多级泵中只是首段和尾段采用蜗壳而在中段采用导轮装置。蜗壳的材质一般为铸铁。防腐泵的蜗壳为不锈钢或其他防腐材料,例如塑料玻璃钢等。多级泵由于压力较大,对材质强度要求较高,其蜗壳一般用铸钢制造。导轮导轮是一个固定不动的圆盘,正面有包在叶轮外缘的正向导叶,这些导叶构成了一条条扩散形流道,背面有将液体引向下一级叶轮人口的反向导叶,其结构如图116所示。液体从叶轮甩出后,平缓地进入导轮,沿着正向导叶继续向外流动,速度逐渐降低,动能大部分转变为静压能。液体经导轮背面的反向导叶被引入下一级叶轮导轮上的导叶数一般为48片,导叶的入口角一般为8一16,叶轮与导叶间的径向单侧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离心泵 基本知识 汇总 课件
限制150内