《谓词逻辑基础》PPT课件.ppt
《《谓词逻辑基础》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《谓词逻辑基础》PPT课件.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2谓词逻辑基础谓词逻辑基础一阶逻辑一阶逻辑l基本概念基本概念l个体词:表示主语的词个体词:表示主语的词l谓词:刻画个体性质或个体之间关系的词谓词:刻画个体性质或个体之间关系的词l量词:表示数量的词量词:表示数量的词l小王是个工程师。小王是个工程师。l8是个自然数。是个自然数。l我去买花。我去买花。l小丽和小华是朋友。小丽和小华是朋友。其其中中,“小小王王”、“工工程程师师”、“我我”、“花花”、“8”、“小小丽丽”、“小小华华”都都是是个个体体词词,而而“是是个个工工程程师师”、“是是个个自自然然数数”、“去去买买”、“是是朋朋友友”都都是是谓谓词词。显显然然前前两两个个谓谓词词表表示示的
2、的是是事事物物的的性性质质,第第三三个个谓谓词词“去去买买”表表示示的的一一个个动动作作也也表表示示了了主主、宾宾两两个个个个体体词词的的关关系系,最最后后一一个个谓谓词词“是是朋朋友友”表表示示两两个个个个体体词词之之间间的的关系。关系。3.2谓词逻辑基础谓词逻辑基础3.2谓词逻辑基础谓词逻辑基础l例如:(例如:(1)所有的人都是要死的。)所有的人都是要死的。l(2)有的人活到一百岁以上。有的人活到一百岁以上。在个体域在个体域D为人类集合时,可符号化为:为人类集合时,可符号化为:(1)xPxP(x x),其中,其中P P(x x)表示表示x x是要死的。是要死的。(2)x Qx Q(x x)
3、,),其中其中Q Q(x x)表示表示x x活到一百岁以上。活到一百岁以上。在个体域在个体域D是全总个体域时,是全总个体域时,引入特殊谓词引入特殊谓词R R(x x)表示表示x x是人,可符号化为:是人,可符号化为:(1 1)x x(R R(x x)P P(x x)),其中,其中,R R(x x)表示表示x x是人;是人;P P(x x)表示表示x x是要死的。是要死的。(2 2)x x(R R(x x)Q Q(x x)),),其中,其中,R R(x x)表示表示x x是人;是人;Q Q(x x)表示表示x x活到一百岁以上。活到一百岁以上。一阶逻辑一阶逻辑l公式及其解释公式及其解释l个体常量
4、:个体常量:a,b,cl个体变量:个体变量:x,y,zl谓词符号:谓词符号:P,Q,Rl量词符号:量词符号:,3.2谓词逻辑基础谓词逻辑基础量词否定等值式:量词否定等值式:l(x x )P P(x x)(y y )P P(y y)l(x x )P P(x x)(y y )P P(y y)量词分配等值式:量词分配等值式:l(x x )(P P(x x)Q Q(x x))()(x x )P P(x x)(x x )Q Q(x x)l(x x )(P P(x x)Q Q(x x))()(x x )P P(x x)(x x )Q Q(x x)消去量词等值式:消去量词等值式:设个体域为有穷集合(设个体域
5、为有穷集合(a a1 1,a,a2 2,a,an n)l(x x )P P(x x)P P(a a1 1 )P P(a a2 2 )P P(a an n )l(x x )P P(x x)P P(a a1 1 )P P(a a2 2 )P P(a an n )3.2谓词逻辑基础谓词逻辑基础量词辖域收缩与扩张等值式:量词辖域收缩与扩张等值式:l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Ql(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(Q Q
6、 P P(x x))Q Q (x x )P P(x x)l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Ql(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(P P(x x)Q Q)()(x x )P P(x x)Q Q l(x x )(Q Q P P(x x))Q Q (x x )P P(x x)3.2谓词逻辑基础谓词逻辑基础3.2谓词逻辑基础谓词逻辑基础SKOLEMSKOLEM标准形标准形l前束范式前束范式定义定义:说公式:说公式A A是一个前束范式,如果是一个前束范式,如果A A中中的一切量词都位于该公式的最左边(不
7、含否的一切量词都位于该公式的最左边(不含否定词),且这些量词的辖域都延伸到公式的定词),且这些量词的辖域都延伸到公式的末端。末端。3.3谓词逻辑归结原理谓词逻辑归结原理即:即:把所有的量词都提到前面去,然后消把所有的量词都提到前面去,然后消掉所有量词掉所有量词(Q(Q1 1x x1 1)(Q)(Q2 2x x2 2)(Q)(Qn nx xn n)M(x)M(x1 1,x,x2 2,x,xn n)约束变项换名规则:约束变项换名规则:l(Qx(Qx )MM(x x)(QyQy )MM(y y)l(Qx(Qx )MM(x,zx,z)(QyQy )MM(y,zy,z)3.3谓词逻辑归结原理谓词逻辑归结
8、原理 l量词消去原则:量词消去原则:消去存在量词消去存在量词“”,略去全程量词,略去全程量词“”。注意:注意:左边有全程量词的存在量词,消去左边有全程量词的存在量词,消去时该变量改写成为全程量词的函数;如没有,时该变量改写成为全程量词的函数;如没有,改写成为常量。改写成为常量。3.3谓词逻辑归结原理谓词逻辑归结原理 lSkolemSkolem定理定理:谓词逻辑的任意公式都可以化为与之等价谓词逻辑的任意公式都可以化为与之等价的前束范式,但其前束范式不唯一。的前束范式,但其前束范式不唯一。lSKOLEMSKOLEM标准形定义:标准形定义:消去量词后的谓词公式。消去量词后的谓词公式。注意注意:谓词公
9、式:谓词公式G G的的SKOLEMSKOLEM标准形同标准形同G G并并不等值不等值。3.3谓词逻辑归结原理谓词逻辑归结原理例:例:将下式化为将下式化为Skolem标准形:标准形:(x)(y)P(a,x,y)(x)(y)Q(y,b)R(x)l解:第一步,消去解:第一步,消去号,得:号,得:(x)(y)P(a,x,y)(x)(y)Q(y,b)R(x)l第二步,深入到量词内部,得:第二步,深入到量词内部,得:(x)(y)P(a,x,y)(x)x)(y)Q(y,b)R(x)l第三步,变元易名,得第三步,变元易名,得(x)(y)P(a,x,y)(u)(v)(Q(v,b)R(u)l第第四四步步,存存在在
10、量量词词左左移移,直直至至所所有有的的量量词词移移到到前前面面,(x)(y)(u)(v)(P(a,x,y)(Q(v,b)R(u)由此得到前述范式由此得到前述范式l第第五五步步,消消去去“”(存存在在量量词词),略略去去“”全全称称量词量词l消消去去(y),因因为为它它左左边边只只有有(x),所所以以使使用用x的的函函数数f(x)代替之,这样得到:代替之,这样得到:(x)(u)(v)(P(a,x,f(x)Q(v,b)R(u)l消去消去(u),同理使用,同理使用g(x)代替之,这样得到:代替之,这样得到:(x)(v)(P(a,x,f(x)Q(v,b)R(g(x)l则,略去全称变量,原式的则,略去全
11、称变量,原式的Skolem标准形为:标准形为:P(a,x,f(x)Q(v,b)R(g(x)l子句与子句集子句与子句集l文字:不含任何连接词的谓词公式。文字:不含任何连接词的谓词公式。l子句:一些文字的析取(谓词的和)。子句:一些文字的析取(谓词的和)。l子句集子句集S S的求取:的求取:G G SKOLEM SKOLEM标准形标准形 消去存在变量消去存在变量 以以“,”取代取代“”,并表示为集合形式,并表示为集合形式 。3.3谓词逻辑归结原理谓词逻辑归结原理l G是不可满足的是不可满足的S是不可满足的是不可满足的lG与与S不等价,但在不可满足得意义下是一致的。不等价,但在不可满足得意义下是一致
12、的。l定理:定理:若若G是给定的公式,而是给定的公式,而S是相应的子句集,则是相应的子句集,则G是不是不可满足的可满足的S是不可满足的。是不可满足的。注意注意:G真不一定真不一定S真,而真,而S真必有真必有G真。真。即:即:S=G3.3谓词逻辑归结原理谓词逻辑归结原理lG=GG=G1 1 G G2 2 G G3 3 G Gn n的子句形的子句形lG G的字句集可以分解成几个单独处理。的字句集可以分解成几个单独处理。l有有 S SG G=S=S1 1 U SU S2 2 U S U S3 3 U U S U U Sn n则则S SG G 与与 S S1 1 U U S S2 2 U U S S3
13、 3 U U U U S Sn n在在不不可可满满足足得得意意义义上上是一致的。是一致的。即即S SG G 不可满足不可满足 S S1 1 U SU S2 2 U S U S3 3 U U S U U Sn n不可满足不可满足3.3谓词逻辑归结原理谓词逻辑归结原理例例:对对所所有有的的x,y,z来来说说,如如果果y是是x的的父父亲亲,z又又是是y的的父父亲亲,则则z是是x的的祖祖父父。又又知知每每个个人人都都有有父父亲亲,试试问问对对某某个人来说谁是它的祖父?个人来说谁是它的祖父?求:用一阶逻辑表示这个问题,并建立子句集。求:用一阶逻辑表示这个问题,并建立子句集。解:这里我们首先引入谓词:解:
14、这里我们首先引入谓词:lP(x,y)表示表示x是是y的父亲的父亲lQ(x,y)表示表示x是是y的祖父的祖父lANS(x)表示问题的解答表示问题的解答3.3谓词逻辑归结原理谓词逻辑归结原理对对于于第第一一个个条条件件,“如如果果x是是y的的父父亲亲,y又又是是z的的父父亲亲,则则x是是z的祖父的祖父”,一阶逻辑表达式如下:,一阶逻辑表达式如下:A1:(x)(y)(z)(P(x,y)P(y,z)Q(x,z)SA1:P(x,y)P(y,z)Q(x,z)对于第二个条件:对于第二个条件:“每个人都有父亲每个人都有父亲”,一阶逻辑表达式:,一阶逻辑表达式:A2:(y)(x)P(x,y)SA2:P(f(y)
15、,y)对于结论:某个人是它的祖父对于结论:某个人是它的祖父B:(x)(y)Q(x,y)否定后得到子句:否定后得到子句:((x)(y)Q(x,y))ANS(x)SB:Q(x,y)ANS(x)则得到的相应的子句集为:则得到的相应的子句集为:SA1,SA2,SB3.3谓词逻辑归结原理谓词逻辑归结原理l归结原理正确性的根本在于,找到矛盾归结原理正确性的根本在于,找到矛盾可以肯定不真。可以肯定不真。l方法:方法:l和命题逻辑一样。和命题逻辑一样。l但由于有函数,所以要考虑但由于有函数,所以要考虑合一合一和和置换置换。3.3谓词逻辑归结原理谓词逻辑归结原理l置置换换:可可以以简简单单的的理理解解为为是是在
16、在一一个个谓谓词词公公式式中中用用置置换换项项去去置置换换变变量。量。l定义:定义:置置换换是是形形如如t1/x1,t2/x2,tn/xn的的有有限限集集合合。其其中中,x1,x2,xn是是互互不不相相同同的的变变量量,t1,t2,tn是是不不同同于于xi的的项项(常常量量、变变量量、函函数数);ti/xi表表示示用用ti置置换换xi,并并且且要要求求ti与与xi不不能能相相同同,而而且且xi不能循环地出现在另一个不能循环地出现在另一个ti中。中。例如例如a/x,c/y,f(b)/z是一个置换。是一个置换。g(y)/x,f(x)/y不是一个置换,不是一个置换,3.3谓词逻辑归结原理谓词逻辑归结
17、原理置换置换置换的合成置换的合成l设设 t1/x1,t2/x2,tn/xn,u1/y1,u2/y2,un/yn,是两个置换。,是两个置换。则则 与与 的合成也是一个置换,记作的合成也是一个置换,记作 。它是从集合。它是从集合t1/x1,t2/x2,tn/xn,u1/y1,u2/y2,un/yn中删去以下两种元素:中删去以下两种元素:li.当当ti=xi时,删去时,删去ti/xi(i=1,2,n);lIi.当当yi x1,x2,xn时时,删删去去uj/yj(j=1,2,m)最后剩下的元素所构成的集合。最后剩下的元素所构成的集合。合成即是对合成即是对ti先做先做 置换然后再做置换然后再做 置换,置
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 谓词逻辑基础 谓词 逻辑 基础 PPT 课件
限制150内