运输问题的数学模型课件.ppt
《运输问题的数学模型课件.ppt》由会员分享,可在线阅读,更多相关《运输问题的数学模型课件.ppt(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、运输问题的数学模型运输问题的数学模型3.13.1 运输问题及其数学模型3.23.2 表上作业法3.3 产销不平衡的运输问题3.43.4 应用举例本章主要内容:1掌握运输问题的数学模型、系数矩阵特殊形式2掌握用西北角法、最小元素法求初始基可行解3掌握回路、位势法求解过程和表上作业法求解运输问题过程教学要求:一、运输问题及其数学模型 在经济建设中,经常碰到物资调拨中的运输问题。例如 煤、钢材、粮食、木材等物资,在全国都有若干生产基地,分别将这些物资调到各消费基地去,应如何制定调运方案,使总的运输费用最少?问题的提出:运输问题的一般提法是:设某种物资有m m个产地和n n个销地。产地A Ai i的产
2、量为 ;销地B Bj j的销量 。从第i i个产地向第j j个销地运输每单位物资的运价为C Cijij。这就是由多个产地供应多个销地的单品种物资运输问题。问如何调运这些物资才能使总运费达到最小。1、运输问题的一般提法单位运价表 (1)。即运输问题的总产量等于其总销量,这样的运输问题称为产销平衡的运输问题。(2)。即运输问题的总产量不等于总销量,这样的运输问题称为产销不平衡的运输问题。分两种情况来讨论:若用x xijij表示从A Ai i到B Bj j的运量,那么在产销平衡的条件下,要求得总运费最小的调运方案,数学模型为:2、运输问题的数学模型其中,ai和bj满足:称为产销平衡条件。将约束方程式
3、展开可得约束方程式中共mn个变量,m+n个约束。上述模型是一个线性规划问题。但是其结构很特殊,特点如下:1.变量多(mn个),但结构简单。技术系数矩阵 该系数矩阵中每列只有两个元素为1,其余的都为零。2.m+n个约束中有一个是多余的(因为其间含有一个平衡关系式)所以R(A)=m+n-1,即解的mn个变量中基变量为m+n-1个。二、表上作业法 运输问题仍然是线性规划问题,可以用线性规划法中的单纯形法来解决。但是:1.运输问题所涉及的变量多,造成单纯形表太大;2.若把技术系数矩阵A中的0迭代成非0,会使问题更加复杂。以上两个原因使得我们不得不利用运输问题的特点设计出它的特殊解法表上作业法。表上作业
4、法,实质上还是单纯形法。其步骤如下:1.确定一个初始可行调运方案。可以通过最小元素法、西北角法、Vogel 法来完成;2.检验当前可行方案是否最优,常用的方法有闭回路法和位势法,用这两种方法计算出检验数,从而判别方案是否最优;3.方案调整,从当前方案出发寻找更好方案,常采用闭回路法。二、表上作业法(续)例例3.13.1 某公司从三个产地A1、A2、A3 将物品运往四个销地B1、B2、B3、B4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表3-4所示 问应如何调运,可使得总运输费最小?即初始基本可行解的确定,与一般线性规划问题不同,产销平衡运输问题总是存在可行解。1、确定初始
5、方案 确定初始基本可行解的方法很多,一般希望方法是既简便,又尽可能接近最优解。下面介绍两种方法:最小元素法,西北角法、Vogel 法(1)最小元素法 最小元素法的基本思想是优先满足单位运价最小的供销业务。首先找出运价最小的,并以最大限度满足其供销量为原则确定供销业务。同样的方法反复进行直到确定了所有的供销业务,得到一个完整的调运方案即初始基本可行解为止。销产B B1 1B B2 2B B3 3B B4 4产量产量B B1 1B B2 2B B3 3B B4 4A17311310A241928A3974105需求3656201321344653103方案表运价表以此,得到一初始方案:X13=4,
6、X14=3,X21=3,X23=1,X32=6,X34=3(有数格)X11=X31=X12=X22=X33=X24=0(空格)B1B2B3B4A143A231A363注:()有数格是基变量,共m+n-1=3+4-1=6个。空格是非基变量,共划去m+n=7条线;()如果填上一个变量之后能同时划去两条线(一行与一列),就须在所划去的该行或该列填一个0,此0格当有数格对待。初始方案运费 Z0=31+64+43+12+310+35=86(元)(2)西北角法 西北角法与最小元素法不同,它不是优先考虑具有最小单位运价的供销业务,而是优先满足运输表中西北角(左上角)上空格的供销需求。销销产产BB1 1BB2
7、 2BB3 3BB4 4产量产量产量产量B B1 1B B2 2B B3 3B B4 4A17311310A241928A3974105需求需求365620342236方案表运价表注注注注:应应用用西西北北角角法法和和最最小小元元素素法法,每每次次填填完完数数,都都只只划划去去一一行或一列。行或一列。当当填填上上一一个个数数后后行行、列列同同时时饱饱和和时时,也也应应任任意意划划去去一一行行(列列)。在在饱饱和和的的列列(行行)没没被被划划去去的的格格内内标标一一个个 0,然然后后划划去该列(行)。去该列(行)。例例例例3.23.2 某某公公司司下下属属有有生生产产一一种种化化工工产产品品的的
8、三三个个产产地地A1、A2、A3,有有四四个个销销售售点点B1、B2、B3、B4 销销售售这这种种化化工工产产品品。各各产产地地的的产产量量、各各销销地地的的销销量量和和各各产产地地运运往往各各销销地地每每吨吨产产品品的的运费(百元)如下表所示。运费(百元)如下表所示。销产B B1 1B B2 2B B3 3B B4 4产量产量B B1 1B B2 2B B3 3B B4 4A1753859A2402948A3806375需求35405565195 问应如何调运,可使得总运输费最小问应如何调运,可使得总运输费最小?解:用西北角法求初始基本可行解解:用西北角法求初始基本可行解 销产B B1 1B
9、 B2 2B B3 3B B4 4产量产量B B1 1B B2 2B B3 3B B4 4A1753859A2402948A3806375需求35405565195方案表运价表35400401565(3)伏格尔法(次小运价与最小运价之差大者先安排)销销产产BB1 1BB2 2BB3 3BB4 4产产产产量量量量BB1 1BB2 2BB3 3BB4 4A17311310A241928A3974105需求需求365620方案表运价表 2 5 1 3 01160123 2 1 2 3765122、判断当前方案是否为最优 用单纯形法解线性规划问题时,在迭代过程中每次求得一个基本可行解以后,都要检验它是
10、不是最优解,如果不是最优解,就要继续进行迭代,直到求得最优解或者判定无最优解。表上作业法是用以下两种方法来处理这个问题的:闭回路法和位势法。(1)闭回路法 在单纯形法中,为了检验一个基本可行解是不是最优解,需要求出所有非基变量的检验数。在运输问题中,每个空格对应一个非基变量。因此,我们需要求出每个空格的检验数。由于目标要求极小,因此,当所有的检验数都大于或等于零时该调运方案就是最优方案。B1B2B3B4A143A231A363 对方案表中每一空格,确定一条由空格出发的闭回路。闭回路是由水平或垂直线组成的闭合图形。闭回路上的顶点除了这个空格外,其余均为有数格。B1B2B3B4A143A231A3
11、63 可以证明,对每一个空格都存在而且惟一存在这样一条封闭回路。B1B2B3B4A143A231A363B1B2B3B4A143A231A363B1B2B3B4A143A231A363B1B2B3B4A143A231A363计算出空格的检验数等于闭回路上由此空格起奇数顶点运价与偶数顶点运价负值的代数和。B1B2B3B4A143A231A363 11=3-3+2-1=1 22=9-2+30+54=1 31=7-5+103+21=10 12=11-10+5-4=2 24=810+3 2=-1 33=10-5+10-3=12当所有空格检验数 ij 0则当前方案是最优的,若尚有空格检验数小于零,表明当
12、前方案尚有待调整。若所有的空格检验数都大于等于零,表明任何一个空格处调运1单位都会引起总成本的上升,这表明当前方案不能再改进,即定为最优方案。ij 具有确切的经济意义,它表示由Ai往Bj增运1单位时,引起的总运输成本的变化数。B1B2B3B4A143A231A363 闭闭回回路路法法的的主主要要缺缺点点是是:当当变变量量个个数数较较多多时时,寻寻找找闭闭回回路路以及计算都会产生困难。以及计算都会产生困难。(2)位势法(对偶变量法)对于一个调运方案的每列赋予一个值,称为列位势,记 ,对于每行赋予一个值,称为行位势,记为 则检验数为:ij=cij-ui-vj i=1,m;j=1,n它们的值由下列方
13、程组决定:其中,cij 是所有基变量(数字格)xij 的运价系数。销销产产B B1 1B B2 2B B3 3B B4 4产量产量产量产量B B1 1B B2 2B B3 3B B4 4A17311310A241928A3974105需求需求3656201321344653103方案表运价表u1+v3=c13=3 u2+v1=c21=1u3+v2=c32=4u1u2u3v1v3v2v4u1+v4=c14=10u2+v3=c23=2 u3+v4=c34=5 令u1=5 则有 v4=5 v3=-2u2=4 u3=0v2=4v1=-311 =c11 u1-v1=3 5 (-3)=1 12 =c12
14、u1 v2=11 5 4 =222 =c22 u2 v2=9 4 4 =1 24 =c24 u2 v4=8 4 5 =-1 31 =c31 u3-v1=7 0 (-3)=10 33 =c33 u3 v3=10 0 (-2)=12 再求非基变量(空格)检验数:u1+v3=c13=3 u2+v1=c21=1u3+v2=c32=4u1+v4=c14=10u2+v3=c23=2 u3+v4=c34=5(1)在有数格上填上相应的运价 销销产产B B1 1B B2 2B B3 3B B4 4A143A231A363方案表运价表 销销产产B B1 1B B2 2B B3 3B B4 4A1310A212A3
15、45u1u2u3v1v3v2v4位势法在表上进行:(2)设u1=0,然后根据cij=ui+vj(有数格),依次求得ui和vj的值,并填在相应的位置 销销产产B B1 1B B2 2B B3 3B B4 4A1310A212A345u1u2u3v1v3v2v4239100-1-5计算(ui+vj)表,把(ui+vj)位势和值填在表中相应位置上,并将有数格位置上的值ui+vj 加上括号以示区别。()()()()()()2989-3-2(ui+vj)表 销销产产B B1 1B B2 2B B3 3B B4 4A1311310A21928A374105运价表 销销产产B B1 1B B2 2B B3
16、3B B4 4A129(3)(10)A2(1)8(2)9A3-3(4)-2(5)u1u2u3v1v3v2v4239100-1-5检验数表 销销产产B B1 1B B2 2B B3 3B B4 4A1A2A3(3)计算检验数表ij=cij(ui+vj)(ui+vj)表121-110123、调整方案 若在检验数上有某空格的检验数为负,则可改进方案,降低成本。调整的方法是从具有负检验数的空格出发(有多个负检验数时,选择绝对值大的一个),沿它的闭回路进行调整,即在保持方案可行的条件下,尽量增加空格上的运量。从ij 为最小负值的空格出发.对其闭回路上的奇数顶点运量增加,偶数顶点的运量减少(这才能保证新的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运输 问题 数学模型 课件
限制150内