小升初数学列方程解应用题(共6页).doc
《小升初数学列方程解应用题(共6页).doc》由会员分享,可在线阅读,更多相关《小升初数学列方程解应用题(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上小升初数学列方程解应用题1第十四讲 列方程解应用题 在小学数学中介绍了应用题的算术解法及常见的典型应用题。然而算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应用题,使用算术方法常常比较困难。而用列方程的方法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出方程(或方程组),使问题得以解决。所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。列方程解应用题的一般步骤是:审题,设未知数,找出相等关系,列方程,解方程,检验作答。其中列方程是关键的一步,其实质是将同一个量或等量用两种方式表达出来,
2、而要建立这种相等关系必须对题目作细致分析,有些相等关系比较隐蔽,必要时要应用图表或图形进行直观分析。14.1 列简易方程解应用题10x+1,从而有 3(105+x)=10x+1, 7x, x42857。答:这个六位数为。说明:这一解法的关键有两点:示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。因此,要提高列方程解应用题的能力,就应在这两方面下功夫。例2 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了
3、10分50秒。问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。如果设通讯员从末尾到排头用了x秒,那么通讯员从排头返回排尾用了(650-x)秒,于是不难列方程。解:设通讯员从末尾赶到排头用了x秒,依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。解得x500。推知队伍长为(2.6-1.4)500=600(米)。答:队伍长为600米。说明:在设未知数时,有两种办法:一种是设直接未知数,求什么、设什么;另一种设间接未知数,当直接设未知数不易列出方程时,就设与
4、要求相关的间接未知数。对于较难的应用题,恰当选择未知数,往往可以使列方程变得容易些。例3 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?分析:本题属于追及问题,行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)22或(x-3)26,由此不难列出方程。解:设这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 数学 方程 应用题
限制150内