小学五年级奥数思维训练全集(共27页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《小学五年级奥数思维训练全集(共27页).doc》由会员分享,可在线阅读,更多相关《小学五年级奥数思维训练全集(共27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上小学五年级奥数思维训练全集专心-专注-专业第一周 平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。 平均数=总数量总份数 总数量=平均数总份数 总份数=总数量平均数例1:有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?分析:1箱苹果1箱梨1箱橘子=423=136(个);:1箱桃1箱梨1箱橘子=363=108(个):1箱苹果1箱桃=372=74(个)由、可知:1箱苹果比1箱桃多126108=18(个),再根据等式,用和差关系求出:1箱桃有
2、(7418)2=28(个),1箱苹果有2818=46(个)。试一试1:甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?例2:某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?分析:原来三个数的和是23=6,后来三个数的和是33=9,9比6多出了3,是因为把那个数改成了4。因此,原来的数应该是43=1。试一试2:有五个数,平均数是9。如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?例3:五一班同学数学考试平均成绩91.5分,事后复查发现计
3、算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?分析:98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.791.5=0.2(分)。9里面包含有几个0.2,五一班就有几名同学。试一试3:某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。全班有多少同学?专题二 平均数(二)专题简析:平均数=总数量总份数 总数量=平均数总份数 总份数=总数量平均数例1:小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?分析:每
4、次应多考:8684=2(分)。100分比86分多14分,14里面有7个2分,所以,前面已经测验了7次,这是第8次测验。试一试1:一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?例2:小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,语文、英语两科平均分84分,英语比语文多10分。小亮的各科成绩是多少分?分析:因为语文、英语两科平均分84分,即语文英语=168分,而英语比语文多10分,即英语语文=10分,所以,语文:(
5、16810)2=79分,英语是7910=89分。又因为政治、英语两科平均86分,所以政治是86289=83分;而政治、数学两科平均分91.5分,数学:91.5283=100分;最后根据五科的平均成绩是89分可知,自然:895(798983100)=94分。试一试2:甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?例3:两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?分析:用往返的路程除以往返所用的时间就等于往返两地的平均速度。顺水速度=3601
6、0=36(千米)是,顺水速度=汽艇的静水速度与水流速度的和,所以,静水速度是366=30(千米)。而逆水速度=静水速度水流速度,所以汽艇的逆水速度是306=24(千米)。逆水行全程时所用时间是36024=15(小时),往返的平均速度是3602(1015)=28.8(千米)。试一试3:一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?例4:幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?分析:只要知道了大、小
7、班小朋友分得的平均数,再乘(3020)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多230=60(块),这60块平均分给20个小班的小朋友,每人可得6020=3(块)。因此,大、小班小朋友分得平均块数是103=13(块)。一共分掉13(3020)=650(块)。试一试4:两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?例5:王强从A地到B地,先骑自行车行完全程的一半,每小时行12km。剩下的步行,每小时走4km。王强行完全程的平均速度是每小时多少km?分析:求行完全程的平
8、均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24km(也可以设其他数),这样,就可以算出行全程所用的时间是1212124=4(小时),再用244就能得到行全程的平均速度是每小时6km。试一试5:运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。第3讲 长方形、正方形的周长专题简析:长方形的周长=(长宽)2,正方形的周长=边长4。表面上看起来不是长方形或正方形的图形的周长,需灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。例1:有5张同样大小的
9、纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。分析:根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。因此,所求周长是184=72厘米。试一试1:下图由8个边长都是2厘米的正方形组成,求这个图形的周长。例2:一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?分析: 把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是19244=176(平方厘米)。把A和B移到一起
10、拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。1764=44(厘米),现在这块木板的周长是442=88(厘米)。试一试2:有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。求这个正方形的周长。例3 已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?分析:从图中可以看出,整个图形的周长由六条线段围成,其中三条横着,三条竖着。三条横着的线段和是(ab)2,三条竖着的线段和是b2。所以,整个图形的周长是(ab)2b2,即2a4b。试一试3:有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准
11、备做一个长方体纸盒,求被剪后硬纸板的周长。例4:如下图,阴影部分是正方形,DF=6厘米,AB=9厘米,求最大的长方形的周长。分析:根据题意可知,最大长方形的宽就是正方形的边长。因为BC=EF,CF=DE,所以,ABBCCF=ABFEED=96=15(厘米),这正好是最大长方形周长的一半。因此,最大长方形的周长是(96)2=30(厘米)。试一试5:下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)专题4 长方形、正方形的面积专题简析:长方形的面积=长宽,正方形的面积=边长边长。当已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目时
12、。要利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。例1:已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。求大、小正方形的面积各是多少平方厘米?分析:从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。求到了小正方形的边长,计算大、小正方形的面积就非常简单了。试一试1:有一块长方形草地,长20米,宽15米。在它的四周向外筑一条宽2米的小路,求
13、小路的面积。 例2:一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。分析:因为AECE=6,DEEB=35,把两个式子相乘AECEDEEB=356,而CEEB=14,所以AEDE=35614=15。试一试2:下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。例3:把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?分析:我们可以把小正方形移至大正方形里面进行分析。两个正方形的面积差40平方
14、分米就是图中的A和B两部分,如图。如果把B移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是4020=2(分米),即大、小两个正方形的边长相差2分米。因此,大正方形的边长就是(20+2)2=11(分米),面积是1111=121(平方分米)试一试3:有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米。求草坪的面积。 例4:有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。分析:由于不知道正方形的边长和面积,所以,也没有办法计算出所画正方形的边长或面积。我们可以利用两个正方形之间的关系进行分析。以正方形的
15、四条边为准,分别作出4个等腰直角三角形,如图中虚线部分,显然,虚线表示的正方形的面积就是原正方形面积的2倍。试一试4:四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49m2和4m2,求其中一个长方形的宽。例5: 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一个正方形的面积是多少平方厘米?分析:三个同样大小的正方形拼成的长方形,它的周长是原正方形边长的8倍,正方形的边长为728=9(厘米),一个正方形的面积就是99=81(平方厘米)。试一试5:五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?
16、专题五 尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。例题1:写出除213后余3的全部两位数。分析:因为213=2103,把210分解质因数:210=2357,所以,符号题目要求的两位数有25=10,27=14,35=15,37=21,57=35,235=30,237=42,一共有7个两位数:10、14、15、21、35、30、42。试一试1:178除以一个两位数后余数是3,适合条件的两位数有哪些?例题2: (1)125125125125100个25积的尾数是几?(2
17、)(2126)(2126)(2126)100个(2126)积的尾数是几?分析:(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6。因为个位6乘6,积的个位仍然是6,所以不管多少个(2126)连乘,积的个位还是6。试一试2:1.51.51.51.5200个1.5积的尾数是几?(1263)(1263)(1263)(1263)1000个(1263)积的尾数是几?例题3:999951个9积的个位数是几?分析:我们在计算乘法时会发现:对“积的个位”有影响的是“因数中的个位”,只要找到“个位乘个位时积的变化规律”就可以了。因数中个位的数量
18、积的个位 1个9 9 2个9 1 3个9 9积的尾数以“9、1”两个数字在不断重复出现。512=251,余数是1,说明51个9本乘积的个位是9。试一试3:(1)242424242001个24,积的尾数是多少?(2)1239899,积的尾数是多少?(提示:任何数和0相乘积都是0)例题4: 把1/7化成小数,那么小数点后面第100位上的数字是多少?分析: 因为1/70.7,化成的小数是一个无限循环小数,循环节“”共有6个数字。由于1006=164,所以,小数点后面的第100位是第17个循环节的第4个数字,是8。试一试4:把1/11化成小数,求小数点后面第2001位上的数字。专题六 一般应用题(一)
19、专题简析:在分析应用题的数量关系时:(1)可以从条件出发,逐步推出所求问题(综合法);(2)可以从问题出发,找出必须的两个条件(分析法)。实际解时,根据题中的已知条件,灵活运用这两种方法。例1:某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?分析:如果按原计划的天数加工,加工的零件就会比原计划多563120=288(个)。为什么会多加工288个呢?是因为每天多加工了5650=6(个)。因此,原计划加工的天数是2886=48(天),实际加工了5048120=1520(个)零件。试一试1
20、:小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?例2:甲、乙二人加工零件。甲比乙每天多加工6个零件,乙中途停了15天没有加工。40天后,乙所加工的零件个数正好是甲的一半。这时两人各加工了多少个零件?分析:甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。由于甲每天比乙多加工6个,20天一共多加工620=120(个)。这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120(25-20)=24(个)。乙一共
21、加工了2425=600(个),甲一共加工了6002=1200(个)试一试2:甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?例3:服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?分析:由于每天比计划多加工60件,15天就比原计划的15天多加工6015=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(2015)天中的工作量。所以,原计划每天加工上衣(900350)(2015)=
22、110(件),原计划加工11020=2200(件)。试一试3:汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。甲、乙两地相距多少千米?例4:王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。王师傅一共做了多少个零件?分析:按实际做法再做5天,就会超产(6020)5=400(个)。为什么会超产400个呢?是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。40020=20(天),因此,王师傅一共做了6020=1200(个)零件。试一试4:造纸厂生产一批纸,计划每天生产13.5吨,实际每天比原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 年级 思维 训练 全集 27
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内