高中数学第一章集合与函数概念1.1集合1.1.1集合的含义与表示教学设计新人教A版必修1.pdf
《高中数学第一章集合与函数概念1.1集合1.1.1集合的含义与表示教学设计新人教A版必修1.pdf》由会员分享,可在线阅读,更多相关《高中数学第一章集合与函数概念1.1集合1.1.1集合的含义与表示教学设计新人教A版必修1.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学+初中+高中+努力=大学小学+初中+高中+努力=大学1.1.1 集合的含义与表示整体设计教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、
2、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言 与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神三维目标1了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号2深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题3能选择不同的形式表示具体问题中的集合重点难点教学重点:集合的基本概念与表示方法教学难点:选择适当的方法表示具体问题
3、中的集合课时安排1 课时教学过程导入新课思路 1集合对我们来说可谓是“最熟悉的陌生人”说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱思路 2你经常会谈论你的家庭,你的班级其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟的人;班级成员就是与你在同
4、一个教室里一起上课、一起学习的人;一些具小学+初中+高中+努力=大学小学+初中+高中+努力=大学有特定属性的人构成的群体,在数学上就是一个集合那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容思路 3“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评)“那么,集合的含义究竟是什么?它又该如何表示呢?
5、这就是我们今天要研究的课题”推进新课新知探究提出问题中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?全体自然数能否构成一个集合?如果能,这个集合由什么组成?方程x23x 20的所有实数根能否构成一个集合?如果能,这个集合由什么组成?你能否根据上述几个问题总结出集合的含义?讨论结果:能这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集能这个集合由0,1,2,3,等无限个元素组成,称为无限集能这个集合由1,2 两个数组成我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那
6、么是否所有的元素都能构成集合呢?请看下面几个问题.近视超过300 度的同学能否构成一个集合?“眼神很差”的同学能否构成一个集合?比较问题,说明集合中的元素具有什么性质?我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?组成英文单词every 的字母构成的集合含有几个元素?分别是什么?问题说明集合中的元素具有什么性质?在玩斗地主的时候,我们都知道3,4,5,6,7 是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,小学+初中+高中+努力=大学小学+初中+高中+努力=大学一
7、个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:能不能确定性问题对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视 300 度?400 度?还是说“眼神很差”只是寓意?我们不得而知因此通过问题我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性一次4 个元素 e,v,r,y 这四个字母互异性一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现是 元素相同集合相同体现集合中元素的无序性,
8、即集合中的元素的排列是没有顺序的只要构成两个集合的元素是一样的,我们就称这两个集合是相等的提出问题如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a1.58,那么元素a和集合A,B分别有着怎样的关系?大家能否从问题中总结出元素与集合的关系?A表示“1 20 内的所有质数”组成的集合,那么3_A,4_A.讨论结果:a是集合B中的元素,a不是集合A中的元素a是集合B中的元素,就说a属于集合B,记作aB;a不是集合A中的元素,就说a不属于集合A,记作aA.因此元素与集合的关系有两种,即属于和不属于3A,4A.提出问题从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?字母表示
9、法中有哪些专用符号?除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?列举法的含义是什么?你能否运用列举法表示一些集合?请举例!能用列举法把下列集合表示出来吗?小于 10 的质数;不等式x25 的解集.描述法的含义是什么?你能否运用描述法表示一些集合?请举例!集合的表示方法共有几种?讨论结果:两种,自然语言法和字母表示法小学+初中+高中+努力=大学小学+初中+高中+努力=大学非负整数集(或自然数集),记作 N;除 0 的非负整数集,也称正整数集,记作N*或 N;整数集,记作Z;有理数集,记作Q;实数集,记作R.两种,列举法与描述法把集合中的元素一一列举出来,并用
10、花括号“”括起来表示集合的方法叫做列举法例如“地球上的四大洋”组成的集合可以用列举法表示为 太平洋,大西洋,印度洋,北冰洋,方程x23x20 的所有实数根组成的集合可以用列举法表示为1,2“小于 10 的质数”可以用列举法表示出来;“不等式x25 的解集”不能够用列举法表示出来,因为这个集合是一个无限集因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了用集合所含元素的共同特征表示集合的方法称为描述法具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特
11、征例如,不等式x25 的解集可以表示为xR|x7;所有的正方形的集合可以表示为x|x是正方形 ,也可写成 正方形 自然语言法、字母表示法、列举法、描述法应用示例例 1 下列所给对象不能构成集合的是_(1)高一数学课本中所有的难题;(2)某一班级16 岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80 米的学生活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点集合中元素的确定性;然后指导学生对4 个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性解析:(1)不能构成集合“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是
12、“难题”无法客观地判断实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合(2)能构成集合,其中的元素是某班级16 岁以下的学生(3)因为未规定大个子的标准,所以(3)不能组成集合(4)由于(4)中的对象具备确定性,因此,能构成集合答案:(1)(3)变式训练1下列几组对象可以构成集合的是()A充分接近 的实数的全体小学+初中+高中+努力=大学小学+初中+高中+努力=大学B善良的人C某校高一所有聪明的同学D某单位所有身高在1.7 m 以上的人答案:D 2已知集合S的三个元素a,b,c是ABC的三边长,那么ABC一定不是()A锐角三角形B直角三角形C钝角三角形 D
13、等腰三角形答案:D 3由a2,2a,4 组成一个集合A,A中含有 3个元素,则实数a的取值可以是()A1 B 2 C6 D 2 答案:C 点评:本题主要考查集合元素的性质当所描述的对象明确的时候就能构成集合,若元素不明确就不能构成集合,称为元素的确定性;同时,一个集合中的元素是互不相同的,称为元素的互异性;此外还要注意元素的无序性.例 2 用列举法表示下列集合:(1)小于 10 的所有自然数组成的集合;(2)方程x2x的所有实数根组成的集合;(3)由 120 以内的所有质数组成的集合活动探究:讲解例2 的过程中,可以设计如下问题引导学生:针对例 2(1):自然数中是否含有0?小于10 的自然数
14、有哪些?如何用列举法表示小于 10 的所有自然数组成的集合?针对例2(2):解一元二次方程的方法有哪些?分别是什么?方程x2x的解是什么?如何用列举法表示方程x2x的所有实数根组成的集合?针对例 2(3):如何判断一个数是否为质数(即质数的定义是什么)?1 20 以内的质数有哪些?如何用列举法表示由1 20 以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“”内,并用逗号隔开解:(1)小于 10 的自然数有0,1,2,3,4,5,6,7,8,9,设小于10 的所有自然数组成的集合为A,那么A0,1,2,3,4,5,6,7,8,9;(2)方程x2x的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 第一章 集合 函数 概念 1.1 含义 表示 教学 设计 新人 必修
限制150内