第二章5(隐函数与参数方程求导)ppt课件.ppt
《第二章5(隐函数与参数方程求导)ppt课件.ppt》由会员分享,可在线阅读,更多相关《第二章5(隐函数与参数方程求导)ppt课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章第四节一一 隐函数的隐函数的求导法则求导法则 二二 参数方程的求导法则参数方程的求导法则开普勒方程开普勒方程 这里这里 是常数是常数这个方程不能将这个方程不能将 y用用 x的明显公式表示出来。但事实的明显公式表示出来。但事实上上 y确实是确实是 x 的函数。一般来说,凡是能够由方程的函数。一般来说,凡是能够由方程确定的函数关系,称为隐函数。确定的函数关系,称为隐函数。但需要注意的是,但需要注意的是,并不是随便写一个方程就能确定一个隐函数。并不是随便写一个方程就能确定一个隐函数。比如比如这里就有专门的隐函数理论这里就有专门的隐函数理论(隐函数存在定理隐函数存在定理)。隐函数解:方程两边对方
2、程两边对 x 求导有求导有例例4.4.1 1用复合函数求导法则直接对方程两边求导.隐函数的求导法则解:解得例例4.4.2 2解:例例4.4.3 3例例4.4.4 4解:例例4.54.5解:隐函数求二阶导数:隐函数方程求导的结果对数求导法有时会遇到这样的情形,即虽然给出的是显函数,但直接求导仍然困难或很麻烦,比如函数对数求导法:对数求导法:先在方程两边取对数,然后利用隐函数的求导方法求出导数.目的是利用对数的性质简化求导运算。解:两边取对数,化为隐式两边对 x 求导例例4.4.6 6一般地,对于幂指函数例例4.4.7 7解:对数求导法的适用范围对数求导法的适用范围:参数方程问题问题:消参困难或无
3、法消参如何求导消参困难或无法消参如何求导?实际问题中,有时需要计算由参数方程所确定的函数的导数.这时,可以消去参数t求导.由复合函数及反函数的求导法则得由复合函数及反函数的求导法则得参数方程求导法则例例4.84.8解:所求切线方程为容易漏掉参数方程求二阶导解:例例4.94.9解:例例4.4.1 10 0技巧技巧:求高阶导数时求高阶导数时,尽量将项写成容易求尽量将项写成容易求导的形式导的形式(幂函数幂函数),),而不写成商的形式而不写成商的形式.例例4.4.1 11 1例例4.4.1 12 2之间有联系之间有联系之间也有联系之间也有联系称为称为相关变化率相关变化率一气球从距观测者一气球从距观测者500 500 m处铅直上升,速率为处铅直上升,速率为 140 140 mmin.当气球的高度为当气球的高度为500500 m时时,观观测员视线仰角的增加率是多少测员视线仰角的增加率是多少?提示:对对 t 求导求导例例4.4.1 13 3相关变化率问题相关变化率问题的一般的一般解法解法:找出相关变量找出相关变量 x,y 的关系式的关系式对对 t 求导求导得得到到相关变化率之间的关系式相关变化率之间的关系式求出未知的相关变化率求出未知的相关变化率P110P110-111-111 1(3);1(3);2;2;3(2);3(2);4(2)(4)4(2)(4)7(1);7(1);8(3)8(3)作业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 函数 参数 方程 求导 ppt 课件
限制150内