《经济博弈论》课件(复旦大学 谢识予).ppt
《《经济博弈论》课件(复旦大学 谢识予).ppt》由会员分享,可在线阅读,更多相关《《经济博弈论》课件(复旦大学 谢识予).ppt(276页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、经济博弈论教材 教学课件 主编:谢识予出版:复旦大学出版社教材:经济博弈论(第二版)经济博弈论(第二版)复旦大学出版社,2002年1月经济博弈论习题指南经济博弈论习题指南 复旦大学出版社,2003年1月第一章 导论 本章介绍博弈论的基本概念,包括什么是博弈和博弈论,给出一些经典博弈例子。对博弈分类和博弈理论的结构作一些讨论,对博弈论的发展历史等作简单介绍。目标是让读对博弈论的内容和博弈模型有更直观的概念和印象,本教材的基本内容,以及博弈分析的基本思想方法等形成初步的认识,为后面各章展开详细分析作好铺垫和准备。本章分五节1.1什么是博弈论1.2几类经典博弈模型1.3博弈结构和博弈的分类1.4博弈
2、论历史和发展的简要评述1.5博弈论在我国的应用1.1 什么是博弈论1.1.1 从游戏到博弈1.1.2 一个非技术性定义1.1.1 从游戏到博弈博弈就是策略对抗,或策略有关键作用的游戏博弈就是策略对抗,或策略有关键作用的游戏n博弈Game,博弈论Game Theory,Game即游戏、竞技n游戏和经济等决策竞争较量的共同特征:规则、结果、策略选择,策略和利益相互依存,策略的关键作用 游戏下棋、猜大小 经济寡头产量决策、市场阻入、投标拍卖 政治、军事美国和伊拉克、以色列和巴勒斯坦1.1.2 一个非技术性定义定义定义:博弈就是一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,
3、一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。四个核心方面四个核心方面 博弈的参加者(Player)博弈方 各博弈方的策略(Strategies)或行为(Actions)博弈的次序(Order)博弈方的得益(Payoffs)1.2 几个经典博弈模型1.2.1 囚徒的困境1.2.2 赌胜博弈1.2.3 产量决策的古诺模型1.2.1 囚徒的困境n囚徒的困境是图克(Tucker)1950年提出的n该博弈是博弈论最经典、著名的博弈n该博弈本身讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及各种社会问题,可以揭示市场经济的根本缺陷一、基本模型-5
4、,-50,-8-8,0-1,-1坦 白不坦白坦 白不坦白两个罪犯的得益矩阵囚徒囚徒 2囚囚徒徒1囚徒1:坦白囚徒2:坦白二、双寡头削价竞争100,10020,105150,2070,70高 价低 价高 价低 价寡头寡头2寡寡头头1双寡头的得益矩阵政府组织协调的必要性和重要性寡头1:低价(70)寡头2:低价(70)1.2.2 赌胜博弈n赌博、竞技等构成的博弈问题,在经济中也有许多应用,赌胜博弈也是一类重要的博弈问题,对经济竞争和合作也有很大启示n赌胜博弈的特点是一方得等于另一方失,不可能双赢,属于“零和博弈”一、田忌赛马3,-31,-11,-11,-1-1,11,-11,-13,-31,-11,
5、-11,-1-1,11,-1-1,13,-31,-11,-11,-1-1,11,-1,1,-13,-31,-11,-11,-11,-11,-1-1,13,-31,-11,-11,-1-1,11,-11,-13,-3上中下上下中中上下中下上下上中下中上上中下上下中中上下中下上下上中下中上田田 忌忌齐齐威威王王得益矩阵得益矩阵取胜关键取胜关键:不让对方猜到自己策略,尽可能猜出对方策略二、猜硬币博弈-1,11,-11,-1-1,1正 面反 面猜硬币方猜硬币方盖盖硬硬币币方方正 面反 面三、石头、剪子、布0,01,-1-1,1-1,11,-10,01,-1-1,10,0石 头剪 子布博弈方博弈方2石
6、头剪 子布博博弈弈方方11.2.3 产量决策的古诺模型n古诺模型是寡头产量竞争,是市场经济中最常见的问题之一n古诺1838年提出,直到现在还是经常使用n古诺模型有很多扩展n古诺模型与囚徒困境相似,对理解市场经济和博弈分析本身都有重要价值一、三厂商离散产量一、三厂商离散产量0P4455376281612856520253056420202455525252543113333333734921213二、二、n个厂商连续产量个厂商连续产量1.3 博弈结构和博弈分类1.3.1 博弈中的博弈方1.3.2 博弈中的策略1.3.3 博弈中的得益1.3.4 博弈的过程1.3.5 博弈的信息结构1.3.6 博弈
7、方的能力和理性1.3.7 博弈的分类和博弈理论的结构1.3.1 博弈中的博弈方博弈方博弈方:独立决策、独立承担博弈结果的个人或组织n博弈规则面前博弈方之间平等,不因博弈方之间权利、地位的差异而改变n博弈方数量对博弈结果和分析有影响n根据博弈方数量分单人博弈、两人博弈、多人博弈等。最常见的是两人博弈,单人博弈是退化的博弈一、单人博弈只有一个博弈方的博弈例一:单人迷宫入口AB出口(奖金M)A,1B,1右左右左M00扩展形例二:运输路线-7000-16000-10000-10000好天气(75%)坏天气(25%)自自 然然商商人人水 路陆 路运输路线得益矩阵01-7000-10000-16000-1
8、0000运输路线扩展形好天气(75%)坏天气(25%)单人博弈实质单人博弈实质个体最优化问题个体最优化问题二、两人博弈n两人博弈即有两个博弈方的博弈n两人博弈最常见,研究最多,是最基本和有用的博弈类型n囚徒困境、猜硬币、齐威王田忌赛马等都是两人博弈n两人博弈有多种可能性,博弈方的利益方向可能一致,也可以不一致三、多人博弈n三个博弈方之间的博弈n可能存在“破坏者”:其策略选择对自身的利益并没有影响,但却会对其他博弈方的利益产生很大的,有时甚至是决定性的影响。申办奥运会是典型例子。n多人博弈的表示有时与两人博弈不同,需要多个得益矩阵,或者只能用描述法1.3.2 博弈中的策略策略策略:博弈中各博弈方
9、的选择内容n策略有定性定量、简单复杂之分n不同博弈方之间不仅可选策略不同,而且可选策略数量也可不同n有限博弈:每个博弈方的策略数都是有限的n无限博弈:至少有某些博弈方的策略有无限多个1.3.3 博弈中的得益得益得益:各博弈方从博弈中所获得的利益n得益对应博弈的结果,也就是各博弈方策略的组合n得益是各博弈方追求的根本目标及行为和判断的主要依据n根据得益的博弈分类:零和博弈、常和博弈、变和博弈n零和博弈零和博弈:也称“严格竞争博弈”。博弈方之间利益始终对立,偏好通常不同 猜硬币,田忌赛马,石头-剪刀-布n常和博弈常和博弈:博弈方之间利益的总和为常数。博弈方之间的利益是对立的且是竞争关系 分配固定数
10、额的奖金、利润,遗产官司n变和博弈变和博弈:零和博弈和常和博弈以外的所有博弈。合作利益存在,博弈效率问题的重要性。囚徒困境、产量博弈、制式问题等1.3.4 博弈的过程博弈过程博弈过程:博弈方选择、行为的次序,包括是否多次重复选择、行为。n博弈过程对博弈结果也有重要影响。n根据博弈的过程,博弈可分为静态博弈、动态博弈、重复博弈。静态博弈静态博弈:所有博弈方同时或可看作同时选择策略的博弈 田忌赛马、猜硬币、古诺模型动态博弈动态博弈:各博弈方的选择和行动又先后次序且后选择、后行动的博弈方在自己选择、行动之前可以看到其他博弈方的选择和行动 弈棋、市场进入、领导追随型市场结构重复博弈重复博弈:同一个博弈
11、反复进行所构成的博弈,提供了实现更有效略博弈结果的新可能 长期客户、长期合同、信誉问题n有限次重复博弈n无限次重复博弈1.3.5 博弈的信息结构n完全信息博弈完全信息博弈:各博弈方都完全了解所有博弈方各种情况下的得益n不完全信息博弈不完全信息博弈:至少部分博弈方不完全了解其他博弈方得益的情况的博弈,也称为“不对称信息博弈”n完美信息博弈完美信息博弈:每个轮到行为的博弈方对博弈的进程完全了解的博弈n不完美信息博弈不完美信息博弈:至少某些博弈方在轮到行动时不完全了解此前全部博弈的进程的博弈1.3.6 博弈方的能力和理性完全理性和有限理性完全理性和有限理性n完全理性:有完美的分析判断能力和不会犯选择
12、行为的错误n有限理性:博弈方的判断选择能力有缺陷个体理性和集体理性个体理性和集体理性n个体理性:一个体利益最大为目标n集体理性:追求集体利益最大化n合作博弈:允许存在有约束力协议的博弈n非合作博弈:不允许存在有约束力协议的博弈1.3.7 博弈的分类和博弈理论的结构n非合作博弈和合作博弈n非合作博弈范围内:完全理性博弈和有限理性博弈(进化博弈)n静态博弈,动态博弈,重复博弈n完全信息静态博弈,不完全信息静态博弈,完全且完美信息动态博弈,完全但不完美信息动态博弈,不完全信息动态博弈n零和博弈和非零和博弈,单人博弈和多人博弈1.4 博弈论历史和发展简述1.4.1博弈论的早期研究1.4.2博弈论的形成
13、1.4.3博弈论的成长和发展1.4.4博弈论的成熟及与主流经济学的融合1.4.1博弈论的早期研究n博弈论历史没有公认答案n对具有策略依存特点决策问题的研究可上溯到18世纪初甚至更早n博弈论真正的发展在本世纪n博弈论总体上仍然是发展中的学科 n2000年前我国古代的“齐威王田忌赛马”n1500年前巴比伦犹太教法典“婚姻合同问题”等。n1838年古诺寡头模型。n1883年伯特兰德寡头竞争模型。n1913年齐默罗象棋博弈定理、“逆推归纳法”n1921-1927年波雷尔混合策略的第一个现代表述,有数种策略两人博弈的极小化极大解 n1928年诺伊曼和摩根斯坦扩展形博弈定义,证明有限策略两人零和博弈有确定
14、结果 1.4.2博弈论的形成冯冯.诺伊曼和摩根斯坦诺伊曼和摩根斯坦博弈论和经济行为博弈论和经济行为Theory of Games and Economic Behavior 1944n引进扩展形(extensive form)表示和正规形(normal form)或称策略形(strategy form)、矩阵形(matrix form)表示n提出稳定集(stable sets)解概念n正式提出创造博弈论一般理论的主意n给出博弈论研究的一般框架、概念术语和表述方法1.4.3 博弈论的成长和发展一、第一个研究高潮,本世纪40年代末和50年代初n1950年纳什提出“纳什均衡”(Nash equili
15、brium)概念和证明纳什定理,发展非合作博弈的基础理论。n1950年Melvin Dresher和Merrill Flood在兰德公司(美国空军)“囚徒的困境”(Prisons dilemma)博弈实验,(Howard Raiffa)独立进行这个博弈实验;n1952-1953年期间(L.S.Shapley)和(D.B.Gillies)提出“核”(Core)作为合作博弈的一般解概念nShapley提出了合作博弈的“Shapley值”(Shapley value)概念等。n奥曼(R.J.Aumann)“40年代末50年代初是博弈论历史上令人振奋的时期,原理已经破茧而出,正在试飞它们的双翅,活跃着
16、一批巨人。”二、50年代中后期一直到70年代博弈论发展的青年期n1954-1955年提出了“微分博弈”(Differential games)的概念。n奥曼则在1959年提出了“强均衡”(Strong equilibrium)的概念。n“重复博弈”(Repeated games)也是在50年代末开始研究的,这自然引出了关于重复博弈的“民间定理”(Folk theorem)。n1960年(Thomas C.Schelling)引进了“焦点”(Focal point)的概念。n博弈论在进化生物学(Evolutionary Biology)中的公开应用也是在60年代初出现的。n塞尔腾(Selten)
17、1965提出“子博弈完美纳什均衡”(subgame perfect Nash equilibrium)n1975年提出的“颤抖手均衡”(Trembling hand perfect equilibrium)n海萨尼(Harsanyi)1967-1968三篇构造不完全信息博弈理论的系列论文,“贝叶斯纳什均衡”(Bayesian Nash equilibrium)。n海萨尼1973年提出关于“混合策略”的不完全信息解释,以及“严格纳什均衡”(Strict Nash equilibrium)。n70年代“进化博弈论”(Evolutionary game theory)的重要发展,(John Mayn
18、ard Smith)1972年引进“进化稳定策略”(Evolutionarily stable strategy,ESS)等。n“共同知识”(Common knowledge)的重要性,因为奥曼1976年的文章引起广泛的重视。三、40年代末到70年代末是博弈论发展的重要阶段n这个时期博弈理论仍然没有成熟,理论体系还比较乱,概念和分析方法很不统一,在经济学中的作用和影响还比较有限,但这个时期博弈论研究的繁荣和进展却是非常显著的。n对这一阶段博弈论研究的迅速发展,除了理论发展自身规律的作用以外,全球政治、军事、经济特定环境条件的影响(战争和冷战时期的军事对抗和威慑策略研究的需要,经济竞争、国际经济
19、竞争的加剧),以及经济学理论发展本身的需要等,都起了重要的作用。正是因为有了这一阶段博弈论研究的繁荣发展,才有80、90年代博弈论的成熟和对经济学的博弈论革命。1.4.4博弈论的成熟及与主流经济学的融合一、80、90年代是博弈论走向成熟的时期 n1981(Elon Kohlberg)“顺推归纳法”(Forward induction)n克瑞泼斯(David M.kreps)和威尔孙(Robert Wilson)1982年提出“序列均衡”(Sequential equilibria)n1982年斯密(John Maynard Smith)出版了进化和博弈论()n1984年由伯恩海姆(B.D.Be
20、rnheim)和皮尔斯(D.G.Pearce)提出“可理性化性”(Rationalizability)n海萨尼和塞尔腾1988年提出了在非合作和合作博弈中均衡选择的一般理论和标准,n1991年弗得伯格(D.Fudenberg)和泰勒尔(J.Tirole)首先提出了“完美贝叶斯均衡”(Perfext Bayesian equilibrium)的概念二、博弈论和经济学诺贝尔奖n1994:非合作博弈:纳什(Nash)、海萨尼(Harsanyi)、塞尔顿(Selten)n1996:不对称信息激励理论:莫里斯(Mirrlees)和维克瑞(Vickrey)n2001:不完全信息市场博弈:阿克罗夫(Aker
21、lof)(商品市场)、斯潘塞(Spence)(教育市场)、斯蒂格里兹(Stiglitze)(保险市场)n2002:实验经济学:史密斯(Smith),心理经济学:卡尼曼(Kahneman)1.5 博弈论在我国的应用n企业经营者的决策思路和工具。n政府的政策和管理思路,与个人、企业和地方博弈的意识。n社会经济问题的理论分析工具,解释经济中许多低效率现象的根源,找出各种经济问题的制度性、环境性原因,揭示各种经济行为和政策的效率意义等。第二章 完全信息静态博弈 本章介绍完全信息静态博弈。完全信息静态博弈即各博弈方同时决策,且所有博弈方对各方得益都了解的博弈。囚徒的困境、齐威王田忌赛马、猜硬币、石头剪子
22、布、古诺产量决策都属于这种博弈。完全信息静态博弈属于非合作博弈最基本的类型。本章介绍完全信息静态博弈的一般分析方法、纳什均衡概念、各种经典模型及其应用等。本章分六节2.1基本分析思路和方法2.2纳什均衡2.3无限策略博弈分析和反应函数2.4混合策略和混合策略纳什均衡2.5纳什均衡的存在性2.6纳什均衡的选择和分析方法扩展2.1 基本分析思路和方法2.1.1 上策均衡2.1.2 严格下策反复消去法2.1.3 划线法2.1.4 箭头法2.1.1 上策均衡上策上策:不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略 囚徒的困境中的“坦白”;双寡头
23、削价中“低价”。上策均衡上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果n上策均衡不是普遍存在的 2.1.2 严格下策反复消去法严格下策严格下策:不管其它博弈方的策略如何变化,给一个博弈方带来的收益总是比另一种策略给他带来的收益小的策略严格下策反复消去:1,01,30,10,40,22,0左中右上下1,01,30,40,2左中1,01,3左中2.1.3 划线法1,01,30,10,40,22,0-5,-50,-8-8,0-1,-1囚囚徒徒困困境境-1,11,-11,-1-1,1猜猜硬硬币币2,10,00,01,3夫夫妻妻之之争争2.1.4 箭头法
24、1,01,30,10,40,22,0-5,-50,-8-8,0-1,-1囚囚徒徒困困境境-1,11,-11,-1-1,1猜猜硬硬币币2,10,00,01,3夫夫妻妻之之争争2.2 纳什均衡2.2.1 纳什均衡的定义2.2.2 纳什均衡的一致预测性质2.2.3 纳什均衡与严格下策反复消去法2.2.1 纳什均衡的定义n策略空间:n博弈方 的第 个策略:n博弈方 的得益:n博弈:纳什均衡纳什均衡:在博弈 中,如果由各个博弈方的各一个策略组成的某个策略组合 中,任一博弈方 的策略,都是对其余博弈方策略的组合 的最佳对策,也即 对任意 都成立,则称 为 的一个纳什均衡2.2.2 纳什均衡的一致预测性质一
25、致预测一致预测:如果所有博弈方都预测一个特定博弈结果会出现,所有博弈方都不会利用该预测或者这种预测能力选择与预测结果不一致的策略,即没有哪个博弈方有偏离这个预测结果的愿望,因此预测结果会成为博弈的最终结果n只有纳什均衡才具有一致预测的性质n一致预测性是纳什均衡的本质属性n一致预测并不意味着一定能准确预测,因为有多重均衡,预测不一致的可能2.2.3 纳什均衡与严格下策反复消去法n上策均衡肯定是纳什均衡,但纳什均衡不一定是上策均衡命题命题2.1:在n个博弈方的博弈 中,如果严格下策反复消去法排除了除 之外的所有策略组合,那么 一定是该博弈的唯一的纳什均衡命题命题2.2:在n个博弈方的博弈中 中,如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经济博弈论 经济博弈论课件复旦大学 谢识予 经济 博弈论 课件 复旦大学 谢识予
限制150内