脑影像智能分析与脑疾病早期诊断ppt课件.pptx
《脑影像智能分析与脑疾病早期诊断ppt课件.pptx》由会员分享,可在线阅读,更多相关《脑影像智能分析与脑疾病早期诊断ppt课件.pptx(78页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、脑影像智能分析与脑疾病 早期诊断张道强南京航空航天大学Brain Projects美国“脑活动图谱”计划欧盟“人类脑计划”中国脑计划Brain Imaging(Neuroimaging)Neuroimaging includes the use of various techniques to either directly or indirectly image the structure or function of the brainTwo broad categoriesStructural neuroimaging deals with the structure of the br
2、ainFunctional neuroimaging is used to indirectly measure brain functionsNeuroimaging-based Classification(S.Lemm,et al.,Neuroimage,2011)Example:Brain Decoding(Nature Feature News,2013)(T.Mitchell et al.,Science,2008)Recovery MoviesOutlineSummary123Backgrounds on Alzheimers DiseaseBrain-imaging based
3、 AnalysisBrain-network based Analysis4History of ADAD was first described by German psychiatrist and neuropathologist Alois Alzheimer in 1906 and was named after himThe 51 y.o.woman(Auguste Deter)cared by Dr.Alzheimer until her death in 1906.He did an autopsy,examined her brain&described the typical
4、 abnormalities of what would be called later Alzheimers DiseaseWhat Is AD?It is the most common form of dementiaThere is no cure for the disease,which worsens as it progresses,and eventually leads to deathMost often,AD is diagnosed in people over 65 years of ageIn 2006,there were 26.6 million suffer
5、ers worldwide,and it is predicted to affect 1 in 85 people globally by 2050不同年代我国痴呆不同年代我国痴呆和和A D 患患者的人数者的人数【Lancet.2013】1.“三三高高”:患病率高、患病率高、致残率高、致残率高、负负担重担重2.“三低三低”:就就诊诊率低、率低、诊诊断率低、治断率低、治疗疗率低率低目前我目前我国国A D 的患病率的患病率【Alzheimers&Dementia.2013】我我国国A D 现现状状:Celebrities with ADNormal vs.AD BrainIn the norma
6、l brain there is a lot of healthy brain tissue in the language area.In the AD affected brain there is little in that areaThere are many differences between the two brains including the memory,sulcus,gyrus,ventricle,and language areas.In the AD brain,these are either shrunken or stretched out to unhe
7、althy measuresNormal vs.AD BrainForms abnormal clumps called amyloid plaques and tangled bundles of fibers called neurofibrillary tangles in the brainAD自画像自画像1967(早年)(早年)1996(患病第(患病第2年)年)1997(患病第(患病第3年)年)199819992000Normal or diseased?(S.Crutch,et al.,Lancet Neurology,2012)Normal or diseased?(S.Crut
8、ch,et al.,Lancet Neurology,2012)AD ProgressionAD atrophy progresses Starts in the medial temporal and limbic areas Hippocampus and entorhinal cortex Subsequently spreading to parietal association areas Finally to frontal and primary corticesAD BiomarkersBiomarkers for early diagnosis of AD Magnetic
9、resonance imaging(MRI)Positron emission tomography(PET)Cerebrospinal fluid(CSF)-A42,t-tau and p-tau MRIPETCSFBiomarkersOutlineSummary123Backgrounds on Alzheimers DiseaseBrain-imaging based AnalysisBrain-network based Analysis4Multimodal ClassificationMotivation Several modalities of biomarkers have
10、been proved to be sensitive to AD,or its prodromal stage,i.e.,mild cognitive impairment(MCI)Different biomarkers provide complementary information,which may be useful for diagnosis of AD or MCI when used togetherQuestion:How can we effectively combine both imaging data(MRI and PET)and non-imaging da
11、ta(CSF)for multi-modality based classification?FlowchartTemplateMRIdataPETdataCSFdata68,131,21,42,FeatureextractionFeatureextractionFeature selectionCalculatekernel matrixCalculatekernel matrixCalculatekernel matrixSVMoptionalKKeerrnneell ccoommbbiinnaattiioonn(D.Zhang,et al.Neuroimage,2011)Material
12、s202 subjects from ADNI,including 51 AD patients,99 MCI and 52 healthy controls 43 MCI converters who had converted to AD within 18 monthsand 56 MCI non-converters who had not converted Only baseline data of MRI,CSF and PET are usedAD(n=51;18F/33M)MCI(n=99;32F/67M)HC(n=52;8F/34M)MeanSDRangeMeanSDRan
13、geMeanSDRangeAge75.27.459-8875.37.055-8975.35.262-85Education14.73.64-2015.92.98-2015.83.28-20MMSE23.82.020-2627.11.724-30291.225-30CDR0.70.30.5-10.50.00.5-0.500.00-0ResultsAD vs.HCMCI vs.HCMethodsACC(%)SEN(%)SPE(%)ACC(%)SEN(%)SPE(%)MRI86.2(82.9-89.0)86(82.7-88.7)86.3(83.1-89.1)72.0(68.4-74.7)78.5(7
14、5.6-80.6)59.6(55.1-63.7)CSF82.1(80-84.9)81.9(80-84.7)82.3(80-85.1)71.4(68.2-73.3)78(75.6-79.4)58.8(54.3-61.7)PET86.5(82.9-90.5)86.3(82.7-90.3)86.6(83.1-90.6)71.6(67.4-74.7)78.2(75-80.6)59.3(52.9-63.7)Combined93.2(89.0-96.5)93(88.7-96.3)93.3(89.1-96.6)76.4(73.5-79.7)81.8(79.4-84.4)66.0(62.6-70.3)Base
15、line91.5(88.5-96.5)91.4(88.3-96.3)91.6(88.6-96.6)74.5(71.9-78.2)80.4(78.3-83.3)63.3(59.7-68.3)Comparison of performance of single-modaland multimodal classification methods(D.Zhang,et al.Neuroimage,2011)Multi-Modal Multi-Task LearningMotivation Besides classification,there also exist regression task
16、s which estimate continuous clinical scores to evaluate the stage of AD pathology and predict future progression Both regression and classification tasks are essentially related due to the same underlying pathologyQuestion:How can we jointly predict multiple regression and classification variables f
17、rom multi-modality data?AD/MCI/HCMMSEADAS-Cog(D.Zhang,D.Shen.Neuroimage,2012)FlowchartTemplateMRIdataPETdataCSFdataFeatureextractionFeatureextractionSVM(Regression/Classification)68,131,21,42,ClinicalscoresMMSE;ADAS-CogClass LabelsCalculate kernel matrixSVM(Regression/Classification)Multi-modelSVMKK
18、eerrnneell combinationCalculatekkeerrnneell mmaattrriixxCCaallccuullaattee kernel matrixMTFSMulti-task feature selectionMTFS(D.Zhang,D.Shen.Neuroimage,2012)MaterialsADNI Subjects 186subjects(45AD,91 MCI and 50 HCs),only baseline data,3 modalities(MRI,CSF and PET)deviati ExperimentsExperiment 1 Estim
19、ating clinical stages MMSE,ADAS-Cog,and class label(AD/MCI/HC)Experiment 2 Predicting 2-year MMSE and ADAS-Cog changes and MCI conversionResultsComparison of performances of different methods on Experiment 1Results(contd)Comparison of performances of different methods on Experiment 2Manifold Regular
20、ized Multitask Learning(B.Jie,D.Zhang,et al.Human Brain Mapping,2015)Multi-level Multitask Learning(M.Wang,et al.MICCAI 2017)Longitudinal Multitask Learning(D.Zhang,et al.PLOS ONE,2012;B.Jie,et al.IEEE TBME 2017)Multimodal Transfer Learning(B.Cheng,et al.Brain Imaging&Behavior 2015,2018;IEEE TBME 20
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 影像 智能 分析 疾病 早期 诊断 ppt 课件
限制150内