三角形的内切圆ppt课件.ppt
《三角形的内切圆ppt课件.ppt》由会员分享,可在线阅读,更多相关《三角形的内切圆ppt课件.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去确定圆的条件是什么确定圆的条件是什么?角平分线的定义、性质和判定都是什么?角平分线的定义、性质和判定都是什么?由于由于不共线三点确定一个圆不共线三点确定一个圆,因此每一个三角,因此每一个三角形都形都有且只有一个外接圆有且只有一个外接圆,圆心是三边垂直平,圆心是三边垂直平分线的交点,叫做三角形的分线的交点,叫做三角形的外心外心.外心到三角外心到三角形三个顶点的距离相等形三个顶点的距离
2、相等.三角形的外心可能在三角形的外心可能在三角形内三角形内(锐角三角形锐角三角形),可能在三角形的一边,可能在三角形的一边上上(直角三角形的外心是斜边的中点直角三角形的外心是斜边的中点),可能在,可能在三角形外面三角形外面(钝角三角形钝角三角形).回顾回顾&思考思考火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 小小明在一家木料厂上班,工作之余想对厂明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,里的三角形废料进行加工:裁下一块圆形用料,且使圆的面积最大。且使圆的面积最大。下图是他的几种设计,请同学们帮他
3、确定一下。下图是他的几种设计,请同学们帮他确定一下。ABC火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去思考下列问题思考下列问题:1如图,若如图,若 O与与ABC的两边相切,那么圆心的两边相切,那么圆心O的的位置有什么特点?位置有什么特点?圆心圆心0在在ABC的平分线上。的平分线上。2如图如图2,如果,如果 O与与ABC的内角的内角ABC的两边的两边相切,且与内角相切,且与内角ACB的两的两边也相切,那么此边也相切,那么此 O的圆心的圆心在什么位置?在什么位置?圆心圆心0在在ABC与与ACB的两个角的角平的两个角的角平分线的交点上。
4、分线的交点上。OMABCNO图图2AB C 合合作作探探究究:三三角角形形内内切切圆圆的的作作法法火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去3如何确定一个与三角形如何确定一个与三角形三边都相切的圆的圆心位置三边都相切的圆的圆心位置与半径的长?与半径的长?4你能作出几个与一个你能作出几个与一个三角形的三边都相切的三角形的三边都相切的圆?内切圆圆心能否在圆?内切圆圆心能否在三角形外部三角形外部?作出三个内角的平分线,三条内角作出三个内角的平分线,三条内角平分线相交于一点,这点就是符合平分线相交于一点,这点就是符合条件的圆心,过圆心作
5、一边的垂线,条件的圆心,过圆心作一边的垂线,垂线段的长是符合条件的半径。垂线段的长是符合条件的半径。IFCABED火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去ABCM已知:已知:ABC(如图)如图).求作:和求作:和ABC的各边都相切的圆的各边都相切的圆.作法:作法:1.作作ABC、ACB的平分线的平分线BM和和CN,交点为交点为I.N ID例例1 作圆,使它和已知三角形的各边都相切作圆,使它和已知三角形的各边都相切分析2.过点过点I作作IDBC,垂足为点垂足为点D.3.以以I为圆心,为圆心,ID为半径作为半径作 I.I就是所求的
6、圆就是所求的圆.火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去mDnAElBCFO 1.和三角形各边都相切的圆叫做和三角形各边都相切的圆叫做三角形的内切圆三角形的内切圆,内切圆的圆心叫做内切圆的圆心叫做三角形的内心三角形的内心,这个三角形叫做,这个三角形叫做圆的圆的外切三角形外切三角形.2.和多边形各边都相切的圆叫做和多边形各边都相切的圆叫做多边形的内切圆,多边形的内切圆,这个多边形叫做这个多边形叫做圆的外切多边形圆的外切多边形.读句画图:读句画图:作直线作直线m与与 O相切于点相切于点D,作直线作直线n与与 O相切于点相切于点E,
7、直线直线m和直线和直线n相交于点相交于点A;以点以点O为圆心,为圆心,1cm为半径画为半径画 O;作直线作直线l与圆与圆O相切于点相切于点F,直线直线l分别与直线分别与直线m、直线直线n相交于点相交于点B、C.火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 1.如图如图1,ABC是是 O的的 三角形。三角形。O是是ABC的的 圆,圆,点点O叫叫ABC的的 ,它是三角形它是三角形 的交点的交点.外接外接内接内接外心外心三边中垂线三边中垂线2.如图如图2,DEF是是 I的的 三角形,三角形,I是是DEF的的 圆,圆,点点I是是 DEF的
8、的 心,心,它是三角形它是三角形 的交点的交点.外切外切内切内切内内三条角平分线三条角平分线3.如图如图3,四边形,四边形DEFG是是 O的的 四边形,四边形,O是四边形是四边形DEFG的的 圆圆.内切内切外切外切ABCO图图1IDEF图2DEFG.O图图3火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去三角形内心的性质三角形内心的性质:1.三角形的内心到三角形各边的距离相等;三角形的内心到三角形各边的距离相等;2.三角形的内心在三角形的角平分线上三角形的内心在三角形的角平分线上.1.三角形的外心到三角形各个顶点的距离相等;三角形的外
9、心到三角形各个顶点的距离相等;2.三角形的外心在三角形三边的垂直平分线上三角形的外心在三角形三边的垂直平分线上.三角形外心的性质三角形外心的性质:DEFOCABI火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去名称名称确定方法确定方法图形图形性质性质外心:外心:三角形三角形外接圆外接圆的圆心的圆心内心:内心:三角形三角形内切圆内切圆的圆心的圆心三角形三边三角形三边中垂线的交中垂线的交点点1.OA=OB=OC2.外心不一定在三外心不一定在三角形的内部角形的内部三角形三条三角形三条角平分线的角平分线的交点交点1.到三边的距离到三边的距离相
10、等;相等;2.OA、OB、OC分别平分分别平分BAC、ABC、ACB3.内心在三角形内内心在三角形内部部oABCOABC火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.三角形的内心到三角形各个顶点的距离相等(三角形的内心到三角形各个顶点的距离相等()2.三角形的外心到三角形各边的距离相等三角形的外心到三角形各边的距离相等()3.等边三角形的内心和外心重合等边三角形的内心和外心重合()4.三角形的内心一定在三角形的内部(三角形的内心一定在三角形的内部()5.菱形一定有内切圆(菱形一定有内切圆()6.矩形一定有内切圆(矩形一定有内切圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 内切圆 ppt 课件
限制150内