《三角函数图象作法.ppt》由会员分享,可在线阅读,更多相关《三角函数图象作法.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1.4.1 正弦、余弦函数的图象正弦、余弦函数的图象教学目标教学目标:1掌握正弦函数、余弦函数图象的画法2通过学习正弦函数、余弦函数图象的画法培养学生分析问题、解决问题的能力教学重点与难点教学重点与难点:五点法画正弦函数的图象采取弧度制来度量角,实际上是在角的集合采取弧度制来度量角,实际上是在角的集合与实际集与实际集R R之间建立了一一对应关系之间建立了一一对应关系正角正角正角正角正实数正实数正实数正实数零角零角零角零角零零零零负角负角负角负角负实数负实数负实数负实数-描点法描点法:查三角函数表得三角函数值查三角函数表得三角函数值,描点描点 ,连线连线.查表查表如如:描点描点几何法:几何法:
2、作三角函数线得三角函数值,描点作三角函数线得三角函数值,描点,连线连线作作如如:的正弦线的正弦线平移定点平移定点1几何法作图的关键是如何利用单位圆中角几何法作图的关键是如何利用单位圆中角x的的正弦线正弦线,巧妙地,巧妙地移动移动到直角坐标系内,从而确定对应的点到直角坐标系内,从而确定对应的点(x,sinx).描点法与几何法作正弦函数的图象的原理分析:描点法与几何法作正弦函数的图象的原理分析:(1)列表列表(2)描点描点(3)连线连线 用用描点法作出函数图象的主要步骤描点法作出函数图象的主要步骤:-三角函数三角函数三角函数线三角函数线正弦函数正弦函数余弦函数余弦函数正弦线正弦线MPyx xO-1
3、PMsin=MPcos=OM余弦线余弦线OM复习正余弦三角函数线:复习正余弦三角函数线:利用单位圆中正弦线(表示正弦)来解决利用单位圆中正弦线(表示正弦)来解决.y=sinx x0,2O1 O yx-11y=sinx xR sin(x+2k)=sinx,kZ 连线:用光滑曲线连线:用光滑曲线 将这些正弦线的将这些正弦线的终点连结起来终点连结起来ABx6yo-12345-2-3-41y=sinx x0,2y=sinx xR正弦曲正弦曲线线yxo1-1如何作出如何作出正弦函数正弦函数的图象(在精确度要求不太高时)的图象(在精确度要求不太高时)?(0,0)(,1)(,0)(,-1)(2,0)五五点点
4、画画图图法法五点法五点法(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)x sinx 0 2 010-10 x6yo-12345-2-3-41 正弦、余弦函数的图象正弦、余弦函数的图象 余弦函数余弦函数的图象的图象 正弦函数正弦函数的图象的图象 x6yo-12345-2-3-41y=co
5、sx=sin(x+),xR余弦曲余弦曲线线(0,1)(,0)(,-1)(,0)(2,1)正弦曲正弦曲线线形状完全一样形状完全一样只是位置不同只是位置不同方法方法2:用余弦线作余弦函数的图象:用余弦线作余弦函数的图象-1-11余弦函数余弦函数的图象的图象-1-114.8 正弦函数正弦函数.余弦函数的图象和性质余弦函数的图象和性质(1)等分等分作法:作法:(2)作余弦线作余弦线(3)竖立、平移竖立、平移(4)连线连线-1-11-11-1-正弦、余弦函数的图象正弦、余弦函数的图象 例例1 画出函数画出函数y=1+sinx,x 0,2 的简图:的简图:x sinx 1+sinx 0 2 010-10
6、1 2 1 0 1 O1yx-12y=sinx,x 0,2 y=1+sinx,x 0,2 正弦、余弦函数的图象正弦、余弦函数的图象 例例2 画出函数画出函数y=-cosx,x 0,2 的简图:的简图:x cosx-cosx 0 2 10-101 -1 0 1 0 -1 yxo1-1y=-cosx,x 0,2 y=cosx,x 0,2 正弦、余弦函数的图象正弦、余弦函数的图象 x sinx 0 2 10-101 练习练习1:在同一坐标系内,用五点法分别画出函数:在同一坐标系内,用五点法分别画出函数 y=sinx,x 0,2 和和 y=cosx,x ,的简图:的简图:o1yx-12y=sinx,x
7、 0,2 y=cosx,x ,向左平移向左平移 个单位长度个单位长度 x cosx100-10 0 练习练习2:(:(1)作函数作函数 y=1+3cosx,x0,2的简图的简图()作函数作函数 y=2sinx-1,x0,2的简图的简图(1)yx小小结结1.正弦曲线、余弦曲线的联系和区别正弦曲线、余弦曲线的联系和区别2.五点作图法:与五点作图法:与x轴的交点,最高点,轴的交点,最高点,最低点,即最低点,即x取取yxO1-1y=sinx,x 0,2 y=cosx,x 0,2 作业作业:必做题:课本第46页第一题选做题:上网查询单位圆中的三角函数线与正余弦函数的图象课堂教学设计说明课堂教学设计说明这节课的教学设计可概括为:1复习相关知识(1)以前学过的函数;(2)图象变换知识;(3)诱导公式2新课(1)正弦函数图象(代数描点法、几何描点法);(2)余弦函数图象(代数描点法、几何描点法、平移交换法)3.重点突出“五点法”
限制150内