12一定是直角三角形吗.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《12一定是直角三角形吗.ppt》由会员分享,可在线阅读,更多相关《12一定是直角三角形吗.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2 一定是直角三角形吗第一章 勾股定理 优优 翼翼 课课 件件 导入新课讲授新课当堂练习课堂小结学练优八年级数学上(BS)教学课件情境引入学习目标1.了解直角三角形的判定条件(重点)2.能够运用勾股数解决简单实际问题(难点)导入新课导入新课 问题:同学们你们知道古埃及人用什么方法得到直角的吗?用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第9个结,拉紧绳子就得到一个直角三角形,其直角在第1个结处.讲授新课讲授新课勾股定理的逆定理一 探究:下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,1
2、5,17.回答下列问题:1.这三组数都满足 a2+b2=c2吗?2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?实验结果:5,12,13满足a2+b2=c2,可以构成直角三角形;7,24,25满足a2+b2=c2,可以构成直角三角形;8,15,17满足a2+b2=c2,可以构成直角三角形.思考:从上述问题中,能发现什么结论吗?如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.有同学认为测量结果可能有误差,不同意 这个发现.你觉得这个发现正确吗?你能给 出一个更有说服力的理由吗?ABC ABC?C是直角ABC是直角三角形ABCa b c 已知
3、:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证明结论简要说明:作一个直角MC1N,在C1M上截取C1B1=a=CB,在C1N上截取C1A1=b=CA,连接A1B1.在RtA1C1B1中,由勾股定理,得A1B12=a2+b2=AB2.A1B1=AB,ABC A1B1C1.(SSS)C=C1=90,ABC是直角三角形.acbACBbaC1MNB1A1u勾股定理的逆定理归纳总结如果三角形的三边长a、b、c满足a2+b2=c2那么这个三角形是直角三角形.ACBabc 勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且
4、满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角,最长边所对角为直角.u特别说明:典例精析例1:一个零件的形状如图1所示,按规定这个零件中A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图2所示,这个零件符合要求吗?DABC4351312DABC图1图2在BCD中,所以BCD 是直角三角形,DBC是直角.因此,这个零件符合要求.解:在ABD中,所以ABD 是直角三角形,A是直角.例2 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15 ,b=8 ,c=17;解:因为152+82=289,172=289,所以152+82=172,根
5、据勾股定理的逆定理,这个三角形是直角三角形,且C是直角.(2)a=13,b=14 ,c=15;解:因为132+142=365,152=225,所以132+142152,不符合勾股定理的逆定理,所以这个三角形不是直角三角形.(3)a:b:c=3:4:5;解:设a=3k,b=4k,c=5k,因为(3k)2+(4k)2=25k2,(5k)2=25k2,所以(3k)2+(4k)2=(5k)2,根据勾股定理的逆定理,这个三角形是直角三角形,C是直角.根据勾股定理及其逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳变式1:已知ABC,AB=n-1,BC=2n,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 12 一定 直角三角形
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内