博弈论与信息经济学讲义2012-2+_2012[1].2.26_.ppt
《博弈论与信息经济学讲义2012-2+_2012[1].2.26_.ppt》由会员分享,可在线阅读,更多相关《博弈论与信息经济学讲义2012-2+_2012[1].2.26_.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、博弈论与信息经济学(Game Theory and Information EconomicsGame Theory and Information Economics)周江华中国科学院研究生院管理学院主要内容简介主要内容简介第一章 概述-人生处处皆博弈n第一篇第一篇 非合作博弈理论非合作博弈理论第二章 完全信息静态信息博弈-纳什均衡第三章 完全信息动态搏弈-子博弈精炼纳什均衡第四章 不完全信息静态博弈-贝叶斯纳什均衡第五章 不完全信息动态博弈-精练贝叶斯纳什均衡n第二篇第二篇 信息经济学信息经济学 第六章 委托-代理理论(I)第七章 委托-代理理论(II)第八章 逆向选择与信号传递 主要内容
2、简介主要内容简介第二章 完全信息静态信息博弈-纳什均衡n一占优战略均衡n二重复剔除的占优均衡n三纳什均衡n四纳什均衡应用举例一占优战略均衡n完全信息静态博弈完全信息:每个参与人对所有其他参与人的特征(包括战略空间、支付函数等)完全了解静态:所有参与人同时选择行动且只选择一次。同时:只要每个参与人在选择自己的行动时不知道其他参与人的选择,就是同时行动n博弈分析的目的是预测均衡结果n博弈论的基本概念包括:参与人:博弈论中选择行动以最大化自己效用的决策主体;参与人:博弈论中选择行动以最大化自己效用的决策主体;行动:参与人的决策变量行动:参与人的决策变量战略:参与人选择行动的规则战略:参与人选择行动的
3、规则信息:参与人在博弈中的知识,特别是有关其他参与人的特征和行动的知识支付函数(收益函数):参与人从博弈中获得的效用水平支付函数(收益函数):参与人从博弈中获得的效用水平 均衡:所有参与人的最优战略的组合均衡:所有参与人的最优战略的组合n参与人、行动、结果称为博弈规则;博弈分析的目的是使用博弈规则决定均衡。n举例n智猪博弈阀门小猪大猪收益(或支付)共10个单位,按要付出2单位。大猪比小猪吃得快.小猪按,大猪吃9,小猪吃1大猪按,大猪吃6,小猪吃4同时按,大猪吃7,小猪吃3投食口5,14,49,-10,0等待小猪大猪按等待按智猪博弈共10个单位,按要付出2单位。n假设有两家地产商正决策是否要在雁
4、栖湖开发房产。A公司一马当先,B公司则尾随在后,静观其变。收益情况如下:A开发不开发BB开发不开发开发(-3,-3)(1,0)(0,1)(0,0)不开发xx一占优战略均衡 案例1-囚徒困境-8,-80,-10-10,0-1,-1囚徒A囚徒B坦白抵赖坦白抵赖-8大于-100大于-1-8大于-100大于-1抵赖是A的严格劣战略抵赖是B的严格劣战略一占优战略均衡n占优战略:不论其他人选择什么战略,参与人的最优战略是唯一的,这样的最优战略称为“占优战略”(dominant strategy)。二占优战略均衡n占优战略均衡n定义:在博弈的战略表达式中,如果对于所有的i,Si*是i的占优战略,下列战略组合
5、称为占优战略均衡:二占优战略均衡n注意:n如果所有人都有(严格)占优战略存在,那么占优战略均衡就是可以预测的唯一均衡。n占优战略只要求每个参与人是理性的只要求每个参与人是理性的,而不要而不要求每个参与人知道其他参与人是理性的求每个参与人知道其他参与人是理性的(也就是说,不要求理性是共同知识)。为什么?二占优战略均衡40004000,4000400080008000,0 00 0,800080000 0,0 0不开发开发商A开发不开发开发-3000-3000,-3000-300010001000,0 00 0,100010000 0,0 0不开发开发商B开发商A开发不开发开发开发商B需求小的情况
6、需求小的情况需求大的情况需求大的情况博弈的战略式表述A严格劣战略B严格劣战略5,14,49,-10,0等待小猪大猪按等待按案例2-智猪博弈等待是小猪的严格占优战略大猪有无严格占优战略?4大于10大于-1第二章 完全信息静态信息博弈-纳什均衡n一博弈的基本概念及战略表述n二占优战略均衡n三重复剔除的占优均衡n四纳什均衡n五纳什均衡应用举例三重复剔除的占优均衡n重复剔除严格劣战略:n思路:首先找到某个参与人的劣战略(假定存在),把这个劣战略剔除掉,重新构造一个不包含已剔除战略的新的博弈,然后再剔除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。这个唯一剩下的战略
7、组合就是这个博弈的均衡解,称为“重复剔除的占优均衡”。三重复剔除的占优均衡注意:与占优战略均衡中的占优战略和劣战略不同,这里的占优战略或劣战略可能只是相对于另一个特定战略而言。三重复剔除的占优均衡5,14,49,-10,0等待小猪大猪按等待按案例2-智猪博弈按是小猪的严格劣战略-剔除4大于10大于-1“按”是大猪的占优战略,纳什均衡:大猪按,小猪等待三重复剔除的占优均衡n重复剔除的占优均衡重复剔除的占优均衡战略组合称为重复剔除的占优均衡,如果它是重复剔除劣战略后剩下重复剔除劣战略后剩下的唯一战略组合的唯一战略组合。如果这种唯一战略组合是存在的,我们就说该博弈是重复剔除占优可解。注意:如果重复剔
8、除后的战略组合不唯一不唯一,该博弈就不是重复剔除占优可解的不是重复剔除占优可解的。三重复剔除的占优均衡1,01,20,30,1M列先生行先生UDL0,12,0R行:没有占优战略列:M严格优于R剔除R行:U优于D列:无占优战略剔除DM优于L(U,M)是重复剔除的占优均衡三重复剔除的占优均衡n卑斯麦海之战n卑斯麦海之战发生在1943年的南太平洋上,日本海军上将木村受命将日本陆军运抵新几内亚,其间要穿越卑斯麦海。n而美国上将肯尼欲对日军运输船进行轰炸,穿越卑斯麦海通往新几内亚的有两条航线,木村必须从中选一条,而肯尼则必须决定将其飞机派往何处去搜索日军,如果肯尼将他的飞机派到了错误的航线上,他虽可以召
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 博弈论 信息 经济学 讲义 2012 _2012 2.26
限制150内