4.1.2_垂直于弦直径(2)(精品).ppt
《4.1.2_垂直于弦直径(2)(精品).ppt》由会员分享,可在线阅读,更多相关《4.1.2_垂直于弦直径(2)(精品).ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、教学目标1.使学生理解圆的轴对称性。2.掌握垂径定理及其推论。3.学会运用垂径定理其推论解决有关的证明、计算问题。教学重点:垂径定理及应用教学难点:垂径定理的理解及其应用。垂径定理 定理定理 垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所对的两条弧并且平分弦所对的两条弧.OABCDMCDAB,如图如图 CD是直径是直径,AM=BM,AC=BC,AD=BD.推论:平分弦推论:平分弦(不是直径)(不是直径)的直径垂直于弦,并且平分弦所的直径垂直于弦,并且平分弦所 对的两条弧。对的两条弧。课堂讨论根据已知条件进行推导:根据已知条件进行推导:过圆心过圆心垂直于弦垂直于弦 平分弦平分弦 平分弦所
2、对优弧平分弦所对优弧 平分弦所对劣弧平分弦所对劣弧(1 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所)平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。对的两条弧。(3 3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(2 2)平分弦所对的一条弧的直径,垂直平分弦,并且平分)平分弦所对的一条弧的直径,垂直平分弦,并且平分 弦所对的另一条弧。弦所对的另一条弧。三个命题命题一:平分弦(不是直径)的直径垂直于弦,并且命题一:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。平分弦所对的两条弧。命题三:弦的垂直平分线经过圆心
3、,并且平分命题三:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。弦所对的两条弧。命题二:平分弦所对的一条弧的直径,垂直平分弦,命题二:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。并且平分弦所对的另一条弧。.OAEBDC已知:已知:AB是弦,是弦,CD平分平分AB,CD AB。求证:求证:CD是直径,是直径,ADBD,ACBC已知:已知:CD是直径,是直径,AB是弦,并且是弦,并且CD平分平分AB。求证:求证:CDAB,ADBD,ACBC已知:已知:CD是直径,是直径,AB是弦,并且是弦,并且ADBD(ACBC)。)。求证:求证:CD平分平分AB,ACBC(ADBD)CD
4、AB 根据垂径定理与推论可知:对于一个圆和一条直根据垂径定理与推论可知:对于一个圆和一条直线来说,如果具备:线来说,如果具备:那么,由五个条件中的任何两个条件都可以推出其他那么,由五个条件中的任何两个条件都可以推出其他三个结论。三个结论。注意要点 经过圆心经过圆心 垂直于弦垂直于弦 平分弦平分弦 平分弦所对的优弧平分弦所对的优弧 平分弦所对的劣弧平分弦所对的劣弧1.1.平分已知弧平分已知弧 AB.AB.你会四等分弧你会四等分弧ABAB吗吗?AB赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为的长)为37.437.4米,拱高(弧的中点到弦的距离)为
5、米,拱高(弧的中点到弦的距离)为7.27.2米,你能求出赵州桥主桥拱的半径吗?米,你能求出赵州桥主桥拱的半径吗?问问题题?例例1 1:赵州桥的主桥拱是圆弧形,它的跨度(弧所对:赵州桥的主桥拱是圆弧形,它的跨度(弧所对弦的长)为弦的长)为37.437.4米,拱高(弧的中点到弦的距离)为米,拱高(弧的中点到弦的距离)为7.27.2米,你能求出赵州桥主桥拱的半径吗?米,你能求出赵州桥主桥拱的半径吗?BOrDCA例例2 2 如图,一条公路的转变处是一段圆弧如图,一条公路的转变处是一段圆弧(即图中弧即图中弧CD,CD,点点O O是是弧弧CDCD的圆心的圆心),),其中其中CD=600m,ECD=600m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.1 垂直 直径 精品
限制150内