《第二章财务管理基本价值观念.ppt》由会员分享,可在线阅读,更多相关《第二章财务管理基本价值观念.ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、MBAMBA财务管理课程财务管理课程1第二章第二章 财务管理基本价值观念财务管理基本价值观念【学习目标学习目标学习目标学习目标】通过本章学习,应掌握资金时间通过本章学习,应掌握资金时间价值的计算方法;掌握风险的概念、种类,以价值的计算方法;掌握风险的概念、种类,以及风险与报酬的关系;熟悉资本资产定价模型及风险与报酬的关系;熟悉资本资产定价模型的应用;了解通货膨胀的概念;了解证券投资的应用;了解通货膨胀的概念;了解证券投资组合的意义;了解风险报酬的衡量方法。组合的意义;了解风险报酬的衡量方法。1第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程22.1 资金的时间价值资金的时间价值
2、资金的时间价值是财务管理的基本观念之一,资金的时间价值是财务管理的基本观念之一,因其非常重要并且涉及所有理财活动,因此有人称因其非常重要并且涉及所有理财活动,因此有人称之为理财的之为理财的“第一原则第一原则”。2.1.1 资金时间价值的概念资金时间价值的概念 资金在周转使用中由于时间因素而形成的差额资金在周转使用中由于时间因素而形成的差额价值,称为资金的时间价值。价值,称为资金的时间价值。2第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程32.1.2 资金时间价值的作用资金时间价值的作用 资金时间价值揭示了不同时点上货币之间的换资金时间价值揭示了不同时点上货币之间的换算关系。资金
3、时间价值以商品经济的高度发展和借算关系。资金时间价值以商品经济的高度发展和借贷关系的普遍存在为前提条件或存在基础,它是一贷关系的普遍存在为前提条件或存在基础,它是一个客观存在的经济范畴,是财务管理中必须考虑的个客观存在的经济范畴,是财务管理中必须考虑的重要因素。重要因素。我国不仅有资金时间价值存在的客观基础,而我国不仅有资金时间价值存在的客观基础,而且有充分运用它的迫切性。把资金时间价值引入财且有充分运用它的迫切性。把资金时间价值引入财务管理,在资金筹集、运用和分配等方面考虑这一务管理,在资金筹集、运用和分配等方面考虑这一因素,是提高财务管理水平,搞好筹资、投资、分因素,是提高财务管理水平,搞
4、好筹资、投资、分配等决策的有效保证。配等决策的有效保证。3第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程42.1.3 资金时间价值的计算资金时间价值的计算1.单利的计算单利的计算(1)单利终值的计算单利终值的计算终值指一定数额资金经过一段时期后的价值,也即终值指一定数额资金经过一段时期后的价值,也即资金在其运动终点的价值。资金在其运动终点的价值。F=P+Pin=P(1+in)(2)单利现值的计算单利现值的计算现值是指在未来某一时点上的一定数额的资金折合现值是指在未来某一时点上的一定数额的资金折合成现在的价值,即资金在其运动起点的价值。成现在的价值,即资金在其运动起点的价值。4第
5、二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程52.复利的计算复利的计算复利是指计算利息时,把上期的利息并入本金一并计复利是指计算利息时,把上期的利息并入本金一并计算利息,即算利息,即“利滚利利滚利”。(1)复利终值的计算(已知现值复利终值的计算(已知现值P P,求终值,求终值F F)复利终值是指一定量的本金按复利计算若干期后的本复利终值是指一定量的本金按复利计算若干期后的本利和。下图为复利终值示意图。利和。下图为复利终值示意图。5第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程6复利终值的计算公式为:复利终值的计算公式为:F=P(1+i)n也可写作:也可写作:F=
6、P(F/P,i,n)(2)复利现值的计算(已知终值复利现值的计算(已知终值F F,求现值,求现值P P)复利现值是指未来一定时间的特定资金按复利计算的复利现值是指未来一定时间的特定资金按复利计算的现在价值,或者说是为取得将来一定本利和现在所需要的本现在价值,或者说是为取得将来一定本利和现在所需要的本金。金。6第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程7下图为复利现值示意图。下图为复利现值示意图。复利现值的计算公式是:复利现值的计算公式是:也可写作:也可写作:P=F(P/F,i,n)7第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程83.年金的计算年金的计算年金
7、是指一定时期内每期相等金额的收付款项。年金是指一定时期内每期相等金额的收付款项。在年金问题中,系列等额收付的间隔期只要满足相在年金问题中,系列等额收付的间隔期只要满足相等的条件即可,因此,间隔期完全可以不是一年。等的条件即可,因此,间隔期完全可以不是一年。例如,每季末等额支付的债券利息就是年金。例如,每季末等额支付的债券利息就是年金。年金有多种形式,根据第一次收到或付出资金年金有多种形式,根据第一次收到或付出资金的时间不同和延续的时间长短,一般可分为普通年的时间不同和延续的时间长短,一般可分为普通年金、即付年金、永续年金和递延年金。金、即付年金、永续年金和递延年金。8第二章财务管理基本价值观念
8、MBAMBA财务管理课程财务管理课程9(1)普通年金的计算普通年金的计算普通年金,也称后付年金,即在每期期末收到或普通年金,也称后付年金,即在每期期末收到或付出的年金,如下所示。付出的年金,如下所示。图中,横轴代表时间,数字代表各期的顺序号,图中,横轴代表时间,数字代表各期的顺序号,竖线的位置表示支付的时点,竖线下端的字母竖线的位置表示支付的时点,竖线下端的字母A A表表示每期收付的金额(即年金)。示每期收付的金额(即年金)。9第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程10普通年金终值(已知年金普通年金终值(已知年金A A求年金终值求年金终值F F)普通年金终值是指其最后一
9、次收到或支付时的普通年金终值是指其最后一次收到或支付时的本利和,它是每次收到或支付的复利终值之和。本利和,它是每次收到或支付的复利终值之和。普通年金终值的计算公式为:普通年金终值的计算公式为:普通年金终值的计算公式也可写作:普通年金终值的计算公式也可写作:F=A(F/A,i,n)即:普通年金终值即:普通年金终值=年金年金年金终值系数年金终值系数10第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程11年偿债基金(已知年金终值年偿债基金(已知年金终值F F求年金求年金A A)偿债基金是指为了在约定的未来某一时点清偿偿债基金是指为了在约定的未来某一时点清偿某笔债务或积聚一定数额的资金而
10、必须分次等额形某笔债务或积聚一定数额的资金而必须分次等额形成的存款准备金。偿债基金的计算实际上是年金终成的存款准备金。偿债基金的计算实际上是年金终值的逆运算,其计算公式为:值的逆运算,其计算公式为:式中的分式式中的分式 称作偿债基金系数称作偿债基金系数 记作(记作(A/FA/F,i i,n n)。)。11第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程12普通年金现值(已知年金普通年金现值(已知年金A A求年金现值求年金现值P P)普通年金现值,是指为在每期期末取得相等金普通年金现值,是指为在每期期末取得相等金额的款项,现在需要投入的金额。普通年金现值的额的款项,现在需要投入的金
11、额。普通年金现值的计算公式为:计算公式为:式中分式式中分式 称作称作“年金现值系数年金现值系数”,记为(,记为(P/AP/A,i i,n n),可通过直接查阅),可通过直接查阅“1 1元年金元年金现值系数表现值系数表”求得有关数值。求得有关数值。12第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程13年资本回收额(已知年金现值年资本回收额(已知年金现值P P求年金求年金A A)年资本回收额是指在给定的年限内等额回收初年资本回收额是指在给定的年限内等额回收初始投入资本或清偿所欠债务的金额。年资本回收额始投入资本或清偿所欠债务的金额。年资本回收额的计算是年金现值的逆运算。其计算公式为
12、:的计算是年金现值的逆运算。其计算公式为:式中的分式式中的分式 称作称作“资本回收系资本回收系数数”,记为(,记为(A/PA/P,i i,n n),可通过直接查阅),可通过直接查阅“资资本回收系数表本回收系数表”或利用年金现值系数的倒数求得。或利用年金现值系数的倒数求得。13第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程14(2)即付年金的计算即付年金的计算即付年金,也称先付年金,即在每期期初收到或即付年金,也称先付年金,即在每期期初收到或付出的年金。它与普通年金的区别仅在于收付款时付出的年金。它与普通年金的区别仅在于收付款时间的不同。如下图所示。间的不同。如下图所示。图中,横
13、轴代表时间,数字代表各期的顺序号,图中,横轴代表时间,数字代表各期的顺序号,竖线的位置表示支付的时点,竖线下端的字母竖线的位置表示支付的时点,竖线下端的字母A A表表示每期收付的金额(即年金)。示每期收付的金额(即年金)。14第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程15 即付年金终值的计算即付年金终值的计算n n期即付年金与期即付年金与n n期普通年金的收付款次数相同,期普通年金的收付款次数相同,但由于其收付款时间不同(普通年金是在每期期末但由于其收付款时间不同(普通年金是在每期期末收到或付出相等的金额),收到或付出相等的金额),n n期即付年金终值比期即付年金终值比n
14、n期期普通年金的终值多计算一期利息。计算公式如下:普通年金的终值多计算一期利息。计算公式如下:F=A(F/A,i,n)(1+i)即:即付年金终值即:即付年金终值=年金年金普通年金终值系数普通年金终值系数(1+i)或:或:F=A(F/A,i,n+1)-1 即:即付年金终值即:即付年金终值=年金年金即付年金终值系数即付年金终值系数15第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程16 即付年金现值的计算即付年金现值的计算同理,同理,n n期即付年金现值比期即付年金现值比n n期普通年金的现值期普通年金的现值多计算一期利息。多计算一期利息。计算公式如下:计算公式如下:P=A(P/A,
15、i,n)(1+i)即:即付年金现值即:即付年金现值=年金年金普通年金现值系数普通年金现值系数(1+i)或:或:P=A(P/A,i,n-1)+1即:即付年金现值即:即付年金现值=年金年金即付年金现值系数即付年金现值系数16第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程17(3)永续年金的计算永续年金的计算 永续年金,即无限期等额收入或付出的年金,永续年金,即无限期等额收入或付出的年金,可视为普通年金的特殊形式,即期限趋于无穷的普可视为普通年金的特殊形式,即期限趋于无穷的普通年金。此外,也可将利率较高、持续期限较长的通年金。此外,也可将利率较高、持续期限较长的年金视同永续年金计算。
16、永续年金现值的计算公式年金视同永续年金计算。永续年金现值的计算公式为:为:当当n n时,(时,(1+i1+i)-n-n的极限为零,故上式可写的极限为零,故上式可写成成:17第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程18(4)递延年金的计算递延年金的计算递延年金,即第一次收到或付出发生在第二期或递延年金,即第一次收到或付出发生在第二期或第二期以后的年金。即第一次收付款与第一期无关,第二期以后的年金。即第一次收付款与第一期无关,而是隔若干期后才开始发生的系列等额收付款项。而是隔若干期后才开始发生的系列等额收付款项。凡不是从第一期开始的年金都是递延年金。凡不是从第一期开始的年金都
17、是递延年金。递延年金终值的计算递延年金终值的计算递延年金是普通年金的特殊形式。递延年金终值递延年金是普通年金的特殊形式。递延年金终值的计算与普通年金计算一样,只是要注意期数。的计算与普通年金计算一样,只是要注意期数。18第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程19 递延年金现值的计算递延年金现值的计算递延年金现值的计算方法有三种:递延年金现值的计算方法有三种:方法方法1 1:P=A(P/A,i,m+n)-(P/A,i,m)方法方法2 2:P=A(P/A,i,n)(P/F,i,m)方法方法3 3:P=A(F/A,i,n)(P/F,i,m+n)其中:其中:m m表示递延期;表
18、示递延期;n n表示连续实际发生的期数表示连续实际发生的期数19第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程202.1.4 贴现率和期数的推算贴现率和期数的推算1.求贴现率求贴现率书【例书【例2 21515】、【例】、【例2 21616】2.求期数求期数书【例书【例2 21717】、【例】、【例2 21818】20第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程212.2 利息率和通货膨胀利息率和通货膨胀2.2.1 利息和利率的表示利息和利率的表示2.2.2 利率的决定因素利率的决定因素21第二章财务管理基本价值观念22【例【例14多项选择题】多项选择题】在不存
19、在通货膨胀的情况下,利率的组成因素包在不存在通货膨胀的情况下,利率的组成因素包括括()。A纯利率纯利率 B违约风险收益率违约风险收益率 C流动性风险收益率流动性风险收益率 D期限风险收益率期限风险收益率【答案】【答案】ABCD【例【例15单项选择题】单项选择题】在没有通货膨胀的情况下,纯利率是指(在没有通货膨胀的情况下,纯利率是指()。)。A风险收益率风险收益率 B社会平均资金利润率社会平均资金利润率 C市场利率市场利率 D没有风险的社会平均资金利润率没有风险的社会平均资金利润率【答案】【答案】D【练习【练习单项选择题】单项选择题】已知短期国库券利率为已知短期国库券利率为4%,纯利率为,纯利率
20、为2.5%,投资,投资人要求的必要报酬率为人要求的必要报酬率为7%,则风险收益率和通货膨胀补偿率分别为(,则风险收益率和通货膨胀补偿率分别为()。)。A.3%和和1.5%B.1.5%和和4.5%C.-1%和和6.5%D.4%和和1.5第一章财务管理总论22MBAMBA财务管理课程财务管理课程232.2.3 名义利率与实际利率的换算名义利率与实际利率的换算方法一:按以下公式将名义利率换算为实际方法一:按以下公式将名义利率换算为实际利率,然后按实际利率计算时间价值。利率,然后按实际利率计算时间价值。i=(1+r/m)m-1方法二:不计算实际利率,而是相应调整有方法二:不计算实际利率,而是相应调整有
21、关指标,即利率变为关指标,即利率变为r/mr/m,期数相应变为,期数相应变为m mn n。F=P(1+r/m)mn公式中:公式中:i i为实际利率;为实际利率;r r为名义利率;为名义利率;m m为每为每年复利次数。年复利次数。23第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程24练习题:练习题:某人为了能在退休后20212045年,每年末领取5000元的养老金,从2001年开始每年末定额向银行存款,年利率为12%。(1)从2001年起,他每年应定额向银行存款多少元才能保证养老金的按时领取?(2)假设2011年时,银行利率降为10%,为了同样保证退休后每年的养老金收入,他从20
22、11年到2020年间每年应该增加存款多少元?24第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程252.2 投资的风险价值投资的风险价值2.2.1 风险的概念风险的概念 风险一般是指在一定条件下和一定时期内可能风险一般是指在一定条件下和一定时期内可能发生的各种结果的变动程度。发生的各种结果的变动程度。财务管理角度的风险,是指企业在各种财务活财务管理角度的风险,是指企业在各种财务活动过程中,由于各种难以预料或无法控制的因素作动过程中,由于各种难以预料或无法控制的因素作用,使企业的实际收益与预计收益发生的背离,从用,使企业的实际收益与预计收益发生的背离,从而蒙受经济损失的可能性。而蒙
23、受经济损失的可能性。25第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程262.2.2 风险的类别风险的类别1.经营风险经营风险 经营风险是指因生产经营方面的原因给企业盈经营风险是指因生产经营方面的原因给企业盈利带来的不确定性。利带来的不确定性。2.财务风险财务风险 财务风险又称筹资风险,是指由于举债而给企财务风险又称筹资风险,是指由于举债而给企业财务成果带来的不确定性。业财务成果带来的不确定性。26第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程借入资金借入资金企业名称企业名称A企业企业B企业企业C企业企业数额数额10万万资金总额资金总额10+10101010+1
24、0资金利润率资金利润率20%510%利息率利息率10%预期盈利预期盈利412利息利息111息后盈利息后盈利303新的自有资新的自有资金报酬率金报酬率30%030%MBAMBA财务管理课程财务管理课程282.2.3 风险报酬风险报酬1.风险报酬的概念风险报酬的概念 风险报酬是指投资者由于冒风险进行投资而获风险报酬是指投资者由于冒风险进行投资而获得的超过资金时间价值的额外收益。得的超过资金时间价值的额外收益。2.风险报酬的表现形式风险报酬的表现形式 风险报酬的表现形式有两种:风险收益额和风风险报酬的表现形式有两种:风险收益额和风险收益率。即:险收益率。即:期望投资报酬率期望投资报酬率=无风险收益率
25、无风险收益率+风险收益率风险收益率28第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程293.风险的衡量风险的衡量对风险进行衡量的步骤如下:对风险进行衡量的步骤如下:(1)确定概率分布确定概率分布(2)计算预期收益计算预期收益预期收益又叫期望值,指某一投资项目未来收预期收益又叫期望值,指某一投资项目未来收益的各种可能结果,用概率为权数计算出来的加权益的各种可能结果,用概率为权数计算出来的加权平均数,是加权平均的中心值。其计算公式如下:平均数,是加权平均的中心值。其计算公式如下:29第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程30(3)计算离散程度计算离散程度 标
26、准离差标准离差标准离差的计算公式为:标准离差的计算公式为:标准离差率标准离差率标准离差率的计算标准离差率的计算公式公式为:为:30第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程314.风险收益率风险收益率(1 1)风险与收益的一般关系)风险与收益的一般关系 必要收益率无风险收益率风险收益率必要收益率无风险收益率风险收益率 无风险收益率纯利率通货膨胀补偿率无风险收益率纯利率通货膨胀补偿率 风险收益率风险系数风险收益率风险系数标准离差率标准离差率(2)风险价值系数的确定风险价值系数的确定 风险价值系数(风险价值系数(b b)的数学意义是指该项投资的风险收益)的数学意义是指该项投资的
27、风险收益率占该项投资的标准离差率的比率。率占该项投资的标准离差率的比率。通常有以下几种方法:通常有以下几种方法:根据以往同类项目的有关数据确定根据以往同类项目的有关数据确定 由企业主管投资的人员会同有关专家确定由企业主管投资的人员会同有关专家确定(3 3)风险投资决策)风险投资决策 通过上述方法将投资方案的风险加以量化,并结合收益通过上述方法将投资方案的风险加以量化,并结合收益因素后,决策者便可据此作出决策。因素后,决策者便可据此作出决策。31第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程322.2.4 投资组合的风险与报酬投资组合的风险与报酬1.投资组合的概念投资组合的概念
28、投资组合是指同时以两个或两个以上资产作为投资组合是指同时以两个或两个以上资产作为投资对象而发生的投资。投资对象而发生的投资。2.投资组合的期望收益率投资组合的期望收益率 由组成投资组合的各种投资项目的期望收益率由组成投资组合的各种投资项目的期望收益率的加权平均数构成。其权数等于各种投资项目在整的加权平均数构成。其权数等于各种投资项目在整个投资组合总额中所占的比例。公式为:个投资组合总额中所占的比例。公式为:32第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程333.两项资产构成的投资组合的风险两项资产构成的投资组合的风险两项资产构成的投资组合的总风险两项资产构成的投资组合的总风险
29、由两种资产组合而成的投资组合收益率方差的由两种资产组合而成的投资组合收益率方差的计算公式为:计算公式为:33第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程【例如例如】假设总投资假设总投资100万元,万元,A方案和方案和B方案各占方案各占50%。表表1:若:若A方案和方案和B方案完全正相关(即收益变动的趋势、方方案完全正相关(即收益变动的趋势、方向、幅度完全一致)向、幅度完全一致)标准差标准差 22.6方方 案案A AB B组组 合合年年 度度收益收益报报酬率酬率收益收益报报酬率酬率收益收益报报酬率酬率010120204040202040404040404002025 51010
30、5 51010101010%10%030317.517.5353517.517.53535353535%35%04042.52.55 52.52.55 55 55%5%05057.57.515157.57.51515151515%15%平均数平均数7.57.515%15%7.57.515%15%15151515标标准差准差22.622.622.622.622.622.6MBAMBA财务管理课程财务管理课程表表2:若:若A和和B完全负相关(即收益变动的幅度和方向完全相反)完全负相关(即收益变动的幅度和方向完全相反)对于完全负相关的资产组合,组合收益率是各个资产收益率的加权平均对于完全负相关的资产
31、组合,组合收益率是各个资产收益率的加权平均数;组合风险是零。数;组合风险是零。结论结论:对于资产组合而言,资产组合的收益是各个资产收益的加权平均:对于资产组合而言,资产组合的收益是各个资产收益的加权平均数;资产组合的风险不一定是加权平均风险,当相关系数小于数;资产组合的风险不一定是加权平均风险,当相关系数小于1,存在风险,存在风险抵消效应。抵消效应。方方 案案A AB B组组 合合年年 度度收益收益报报酬率酬率收益收益报报酬率酬率收益收益报报酬率酬率01012020404051010 1515151502025 51010204040 151515%15%030317.517.535352.5
32、5 5 151515%15%04042.52.55 517.53535 151515%15%05057.57.515157.57.51515151515%15%平均数平均数7.57.515%15%7.57.515%15%15151515标标准差准差22.622.622.622.60MBAMBA财务管理课程财务管理课程【例题例题】项目项目A、B预期收益率为预期收益率为10%和和18%,标准差为,标准差为12%和和20%,投资比例为,投资比例为0.8和和0.2,A和和B的相关系数的相关系数为为0.2。要求:计算投资于要求:计算投资于A和和B的组合收益率和组合标准的组合收益率和组合标准差。差。【答案
33、答案】组合收益率组合收益率=10%0.8+18%0.2=11.6%组合的标准差组合的标准差 11.11%MBAMBA财务管理课程财务管理课程37协方差:协方差:协方差是一个用于测量投资组合中某一具体投协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。资项目相对于另一投资项目风险的统计指标。协方差的计算公式为:协方差的计算公式为:37第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程38相关系数:相关系数:相关系数的计算公式为:相关系数的计算公式为:组合风险与相关系数的关系:例题组合风险与相关系数的关系:例题22738第二章财务管理基本价值观念MBAMB
34、A财务管理课程财务管理课程394.多项资产构成的投资组合风险及其分散化多项资产构成的投资组合风险及其分散化(1)系统风险(不可分散风险)系统风险(不可分散风险)系统风险是指那些影响所有公司的因素引起的系统风险是指那些影响所有公司的因素引起的风险。风险。(2)非系统风险(可分散风险)非系统风险(可分散风险)非系统风险是指发生于个别公司的特有事件所非系统风险是指发生于个别公司的特有事件所造成的风险。由于非系统风险可以通过分散化消除,造成的风险。由于非系统风险可以通过分散化消除,因此一个充分的投资组合几乎没有非系统风险因此一个充分的投资组合几乎没有非系统风险。39第二章财务管理基本价值观念MBAMB
35、A财务管理课程财务管理课程种种类类含义含义致致险险因素因素与与 组合资产数量组合资产数量之间的关系之间的关系非系统风险非系统风险(企业特企业特有风险、有风险、可分散风可分散风险险)指由于某种特定指由于某种特定原因对某特定资原因对某特定资产收益率造成影产收益率造成影响的可能性,它响的可能性,它是可以通过有效是可以通过有效的资产组合来消的资产组合来消除掉的风险。除掉的风险。它是特定企它是特定企业或特定行业或特定行业所特有的业所特有的因素因素 当组合中资产的当组合中资产的个数足够大时这个数足够大时这部分风险可以被部分风险可以被完全消除。(多完全消除。(多样化投资可以分样化投资可以分散)散)系统风险系
36、统风险(市场风险市场风险、不可分、不可分散风险散风险)是影响所有资产是影响所有资产的,不能通过资的,不能通过资产组合来消除的产组合来消除的风险。风险。影响整个市影响整个市场的风险因场的风险因素素不能随着组合中不能随着组合中资产数目的增加资产数目的增加而消失,它是始而消失,它是始终存在的。(多终存在的。(多样化投资不可以样化投资不可以分散)分散)MBAMBA财务管理课程财务管理课程41(3)系统风险的衡量系统风险的衡量 单项资产或资产组合受系统风险影响的程度可以通过系统单项资产或资产组合受系统风险影响的程度可以通过系统风险系数(风险系数(系数)来衡量。系数)来衡量。单项资产的单项资产的系数系数
37、反映单项资产收益率与市场平均收益率之间变动关系的反映单项资产收益率与市场平均收益率之间变动关系的一个量化指标,它表示单项资产收益率的变动受市场平均收一个量化指标,它表示单项资产收益率的变动受市场平均收益率变动的影响程度益率变动的影响程度。如果如果1,表示该资产的收益率与市场平均收益率呈相,表示该资产的收益率与市场平均收益率呈相同比例的变化,其风险情况与市场组合的风险情况一致;同比例的变化,其风险情况与市场组合的风险情况一致;如果如果1,说明该资产收益率的变动幅度大于市场组合,说明该资产收益率的变动幅度大于市场组合收益率的变动幅度,该资产的风险大于整个市场组合的风险收益率的变动幅度,该资产的风险
38、大于整个市场组合的风险 如果如果1,说明该资产收益率的变动幅度小于市场组合,说明该资产收益率的变动幅度小于市场组合收益率的变动幅度,该资产的风险程度小于整个市场投资组收益率的变动幅度,该资产的风险程度小于整个市场投资组合的风险。合的风险。41第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程42投资组合的投资组合的系数系数 42第二章财务管理基本价值观念含义含义计算公式计算公式影响因素影响因素投资组合的投资组合的系数是系数是所有单项资产所有单项资产系数系数的加权平均数,权数的加权平均数,权数为各种资产在投资组为各种资产在投资组合中所占的比重。合中所占的比重。单项资产的单项资产的系系
39、数;各资产在投数;各资产在投资组合中所占比资组合中所占比重。重。MBAMBA财务管理课程财务管理课程432.3 资本市场均衡模型资本市场均衡模型1.资本资产定价模型的建立资本资产定价模型的建立(1)资本资产定价模型的意义及假设资本资产定价模型的意义及假设资本资产定价模型资本资产定价模型CAPMCAPM是指财务管理中为揭示是指财务管理中为揭示单项资产必要收益率与预期所承担的系统风险之间单项资产必要收益率与预期所承担的系统风险之间的关系而构建的一个数学模型。的关系而构建的一个数学模型。(2)资本资产定价模型的基本表达式资本资产定价模型的基本表达式E(Ri)=RF+i(Rm-RF)(3)证券市场线与
40、市场均衡证券市场线与市场均衡如果将资本资产定价模型用图示形式来表示,如果将资本资产定价模型用图示形式来表示,则称为证券市场线(用则称为证券市场线(用SMLSML表示)。表示)。43第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程442.资本资产定价模型的应用资本资产定价模型的应用(1)投资组合风险收益率的计算投资组合风险收益率的计算根据资本资产定价模型的基本表达式,可以推根据资本资产定价模型的基本表达式,可以推导出投资组合风险收益率的计算公式为:导出投资组合风险收益率的计算公式为:E(Rp)p(RmRF)公式中,公式中,E E(R Rp p)为投资组合风险收益率。)为投资组合风险
41、收益率。(2)投资组合的投资组合的系数的推算系数的推算 可推导出特定投资组合的可推导出特定投资组合的系数,公式如系数,公式如下:下:44第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程452.3.2套利定价理论(套利定价理论(APTAPT)1.套利定价理论的意义套利定价理论的意义2.套利定价理论的假设套利定价理论的假设3.套利定价模型的建立套利定价模型的建立(1)两因素模型两因素模型 两因素模型假定影响证券收益率因素有两个:两因素模型假定影响证券收益率因素有两个:F F1 1和和 F F2 2,则证券实际收益率为:,则证券实际收益率为:Rj=a+b1jF1+b2jF2+ej 证券
42、的期望收益率可表示为:证券的期望收益率可表示为:45第二章财务管理基本价值观念MBAMBA财务管理课程财务管理课程第二章财务管理基本价值观念46(2)多因素模型多因素模型在两因素模型中加入多个因素及其反应系数,就在两因素模型中加入多个因素及其反应系数,就成为多因素模型。用公式表示为:成为多因素模型。用公式表示为:46MBAMBA财务管理课程财务管理课程第二章财务管理基本价值观念47例题:有两种股票例题:有两种股票A A和和B B,无风险收益率为,无风险收益率为2 2,因通货膨胀要求的风险补偿为因通货膨胀要求的风险补偿为1.51.5 石油价格变动要求的风险补偿率为石油价格变动要求的风险补偿率为2
43、.32.3 通货膨胀对通货膨胀对A A股票的影响系数为股票的影响系数为0.80.8 通货膨胀对通货膨胀对B B股票的影响系数为股票的影响系数为1.31.3 石油价格对石油价格对A A股票的影响系数为股票的影响系数为0.50.5 石油价格对石油价格对B B股票的影响系数为股票的影响系数为1.81.8 2 20.80.81.50.52.3 2 21.31.31.51.82.347 MBAMBA财务管理课程财务管理课程 资资金金时间时间价价值值一、含义一、含义 1.基本概念基本概念 2.衡量标准衡量标准二、计算二、计算 1.一次性收付款项的终值与现值一次性收付款项的终值与现值 2.年金年金 普通年金
44、的终值与现值普通年金的终值与现值 预付年金的终值与现值预付年金的终值与现值 递延年金的终值与现值递延年金的终值与现值 永续年金的终值与现值永续年金的终值与现值 3.利率和期间的推算利率和期间的推算 4.名义利率与实际利率的换算名义利率与实际利率的换算MBAMBA财务管理课程财务管理课程 投投资风险资风险价价值值一、风险与收益一、风险与收益 的基本原理的基本原理 1.风险的概念风险的概念 2.风险的种类风险的种类 3.风险报酬风险报酬 4.风险衡量指标(方差、标准差、标准离差率)风险衡量指标(方差、标准差、标准离差率)二、资产组的风二、资产组的风险与收益分析险与收益分析 1.资产组的资产组的 风
45、险与收益风险与收益资产组的预期收益率资产组的预期收益率资产组的标准差资产组的标准差 2.系统风险及系统风险及其衡量其衡量单项资产单项资产系数的确定资产组合资产组合系数的确定系数的确定三、证券市场理三、证券市场理论论 1.风险与收益的一般关系风险与收益的一般关系 2.资本资产定价模型资本资产定价模型 3.套利定价理论套利定价理论MBAMBA财务管理课程财务管理课程501.资金时间价值的作用有哪些?资金时间价值与资金时间价值的作用有哪些?资金时间价值与利率的区别是什么?利率的区别是什么?2.什么是投资的风险价值?如何衡量?什么是投资的风险价值?如何衡量?3.什么是通货膨胀?通货膨胀对企业财务活动有什么是通货膨胀?通货膨胀对企业财务活动有哪些影响?哪些影响?4.什么是投资组合?投资组合的风险与报酬如何什么是投资组合?投资组合的风险与报酬如何计量?计量?5.什么是资本资产定价模型?建立该模型的基本什么是资本资产定价模型?建立该模型的基本假设与套利定价理论的基本假设有什么区别?假设与套利定价理论的基本假设有什么区别?50第二章财务管理基本价值观念复习与思考题复习与思考题复习与思考题复习与思考题
限制150内