第五章形状分析与描述PPT讲稿.ppt
《第五章形状分析与描述PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第五章形状分析与描述PPT讲稿.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五章 形状分析与描述第1页,共33页,编辑于2022年,星期二轮廓表示的评价标准:轮廓表示的评价标准:l简单:轮廓应该是一种简洁的表示。l精确:轮廓应能精确地逼近图象特征。l有效:轮廓应适合于后处理阶段的计算。决定轮廓表示精确性的主要因素有以下三个方面:决定轮廓表示精确性的主要因素有以下三个方面:(1)用于轮廓建模的曲线形式;(2)曲线拟合算法的性能;(3)边缘位置估计的精度。轮廓的最简单表示形式是边缘有序表。这种表示的精度就是边缘估计的精度,但其表示的紧凑性是最差的,后处理也不方便,因此不是一种高效的图象分析方法。用适当的曲线模型来拟合边缘会提高精确度,因为曲线模型拟合边缘时往往具有均值化
2、效应,因此可以减少边缘位置误差。曲线模型也会提高轮廓表示的经济性,为后处理提供了一种更简单、更紧凑的表示。第2页,共33页,编辑于2022年,星期二已知一组控制点,曲线拟合常采用内插曲线或逼近曲线来实现。内插:内插:指使得拟合曲线通过所有的控制点。逼近:逼近:指使拟合曲线非常接近这些控制点,而无需一定通过这些控制点。平面曲线函数可表示为三种形式:(1)显式 ;(2)隐式:;(3)参数式:,其中u是某一参数;函数的显式表示很少用在计算机视觉中,主要原因是平面上的曲线可能卷曲,致使一个x值可能对应曲线上多个y值。第3页,共33页,编辑于2022年,星期二5.1 数字曲线及其表示下面讨论一组计算曲线
3、几何元素的算法,包括轮廓长度、正切方向、曲率等。由于相邻象素间的量化增量是45,因此,精确计算斜率和曲率是很困难的。估计正切方向的基本思路是使用边缘表中非邻接非邻接的边缘点,这就允许存在一个较大可能的正切方向集合。设 是边缘表中第i个边缘坐标。K斜率是在边缘表中相距K个边缘点的两个边缘点之间的方向矢量。进一步又分为左K斜率和右K斜率。K曲率是左、右K斜率之差。假定边缘表中有n个边缘 。则数字曲线的长度S及轮廓端点之间的距离D可表示为:第4页,共33页,编辑于2022年,星期二一、链码链码是沿着轮廓记录边缘表的一种表示方法。分为4方向链码和8方向链码。如用8邻点链码表示一条曲线,即从边缘表中的第
4、一个边缘点开始,沿着轮廓按逆时针方向行走,行走方向用8个链码中一个表示。第5页,共33页,编辑于2022年,星期二下图所示曲线的链码是:下图所示曲线的链码是:602222202101344444454577012602222202101344444454577012其差分链码是:其差分链码是:22000062771210000017120111 22000062771210000017120111第6页,共33页,编辑于2022年,星期二将上页图中曲线旋转90后如上图。曲线的链码是:024444424323566666676711234其差分链码不变。二、斜率表示法第7页,共33页,编辑于20
5、22年,星期二5.2 曲线拟合常用的曲线模型有:直线段、圆锥曲线和三次样条曲线。一般,拟合之前应考虑如下两个问题:(1)用什么方法进行边缘点曲线模型拟合?(2)如何测量拟合的逼近程度?现假设边缘位置足够精确,不会对拟合结果产生影响。以下讨论用曲线模型拟合边缘点的方法。设di是边缘点到一条拟合曲线的距离(含正负号),在曲线同一侧时具有相同的符号。以下是一些常用的用于衡量曲线拟合效果的方法。(1)最大绝对误差(MAE)(2)均方差(MSE)(3)规范化最大误差(4)误差符号变化次数 (5)曲线长度与端点距离之比第8页,共33页,编辑于2022年,星期二 一、多直线段多直线段是指端点连接端点的直线段
6、序列,直线段序列的连接点称为顶点。多线段算法的输入值是边缘点有序表拟合边缘表并把第一个边缘点 和最后一个边缘点连接起来的直线段公式如下:上式可改写成:其中:而 是边缘点 和 之间的距离。任给一点 ,设 ,则r的符号可用来计算符号变化次数。点 与拟合直线段的距离为:规范化最大误差为:第9页,共33页,编辑于2022年,星期二(1)多直线段分裂自顶向下的分裂算法是将整条曲线作为初始曲线,通过反复增加顶点来用直线段拟合曲线。直到所有的直线段对应的规范化最大误差均小于某一阈值为止。该过程也称为迭代分解。第10页,共33页,编辑于2022年,星期二(2)线段合并线段合并是指用一直线段尽量多地拟合边缘表中
7、的边缘点。当边缘点离直线太远而无法用该直线段拟合时,则开始新的直线段拟合。(自底而上合并的多线段拟合方法)第11页,共33页,编辑于2022年,星期二(3)分裂与合并将多直线分裂与线段合并方法组合起来,形成合并与分裂算法。第12页,共33页,编辑于2022年,星期二二、二次曲线二次曲线的一般表示如下:二次曲线也称为圆锥曲线,包括:圆、椭圆、抛物线、双曲线。(1)圆弧段(2)圆锥曲线第13页,共33页,编辑于2022年,星期二5.3 样条曲线样条样条:富有弹性的细长条。样条曲线样条曲线:将样条上的若干点固定,沿样条画出的光滑曲线。在数学意义上,样条曲线是用分段多项式表示的一个函数,在其连接点处具
8、有连续的一阶和二阶导数。样条曲线有很多应用。在数学分析中,当没有合适的函数模型时,可选用样条函数拟合数据点;在计算机图形学和计算机辅助设计中,样条函数用来表示自由曲线;在计算机视觉中,若没有表示曲线的合适模型时,样条函数可以提供曲线的通用表示形通用表示形式式。需指出,几何等效几何等效和参数等效参数等效是两个不同的概念。几何等效几何等效:是指它们连接相同的点集(即在空间上对应着相同的形状)。参数等效参数等效:是指两条曲线的方程相同。显然,参数等效比几何等效更稳定。两条曲线可以是几何上等效但可具有不同的参数表示式,这是计算机视觉中的一个重要概念。在计算机视觉的形状表示和物体识别中,常常基于几何等效
9、性。第14页,共33页,编辑于2022年,星期二一、三次样条曲线样条函数最常见的形式是三次样条函数,它是分段三次多项式的一个序列。直线段、二次曲线序列都是样条函数的特例。三次样条函数可以用很少的几个样条段表示很复杂的曲线。已广泛用于图形学及轮廓表示。三次样条具有足够的自由度来逼近边缘段位置和方向。大多数边缘检测算子同时提供边缘方向和位置估计。在直线段、二次曲线拟合中,仅使用了边缘的位置信息。下面介绍一种在三次样条曲线拟合中如何使用有边缘检测器产生的方向信息的例子。平面三次曲线方程如下:或:参数u取值范围在0和1之间。三次曲线起始点为 ,终点为 。三次样条是由构成的一个序列。这一序列定义在连续区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五章 形状分析与描述PPT讲稿 第五 形状 分析 描述 PPT 讲稿
限制150内