《第四章统计推断估计与假设检验精选PPT.ppt》由会员分享,可在线阅读,更多相关《第四章统计推断估计与假设检验精选PPT.ppt(71页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章统计推断估计与假设检验第1页,此课件共71页哦4.1 统计推断的含义统计推断的含义p统计推断研究的是总体与来自总体的样本之间的关系,统计推断研究的是总体与来自总体的样本之间的关系,根据来自总体的样本对总体的种种特征做出判断。根据来自总体的样本对总体的种种特征做出判断。p参数估计和假设检验是统计推断的两个孪生分支参数估计和假设检验是统计推断的两个孪生分支p参数估计问题包括点估计(参数估计问题包括点估计(point estimation)和区间估计)和区间估计(interval estimation).p假设检验包括置信区间法和显著性检验假设检验包括置信区间法和显著性检验第2页,此课件共71
2、页哦4.2 点估计及估计量的特征点估计及估计量的特征一、点估计的含义一、点估计的含义 所谓点估计就是给出被估计参数的一个特定的估计值。所谓点估计就是给出被估计参数的一个特定的估计值。例如随机变量例如随机变量X X服从某一未知均值和方差的正态分布,若有来自该服从某一未知均值和方差的正态分布,若有来自该正态总体的一随机样本,则这些样本数据的平均值就为总体的均值正态总体的一随机样本,则这些样本数据的平均值就为总体的均值u ux x的点估计值,的点估计值,为点估计量。为点估计量。第3页,此课件共71页哦4.2 点估计及估计量的特征点估计及估计量的特征一、点估计的含义一、点估计的含义p点估计量是一个随机
3、变量,因为其值随样本的不同而不同。点估计量是一个随机变量,因为其值随样本的不同而不同。p常用的点估计方法有三种:矩法、最大似然法、最小二乘常用的点估计方法有三种:矩法、最大似然法、最小二乘法。法。p对同一样本根据三种方法估计同一参数,所获得的估计结果对同一样本根据三种方法估计同一参数,所获得的估计结果可能互不相同。然而由于各种建立原则的合理性,所以三种可能互不相同。然而由于各种建立原则的合理性,所以三种方法在研究中都经常使用。方法在研究中都经常使用。第4页,此课件共71页哦二、点估计方法二、点估计方法(1)矩法)矩法p矩法是求估计量最古老的方法。具体作法是:矩法是求估计量最古老的方法。具体作法
4、是:以一样本矩作为以一样本矩作为相应总体矩的估计量;相应总体矩的估计量;以样本矩的函数作为相应的总体矩同以样本矩的函数作为相应的总体矩同样函数的估计量。样函数的估计量。p这种方法最常见的应用是用样本平均数这种方法最常见的应用是用样本平均数 估计总体数学期估计总体数学期望,用样本方差望,用样本方差S2估计总体的方差。估计总体的方差。p矩法比较直观,求估计量时有时也比较直接,但它求出的估计量矩法比较直观,求估计量时有时也比较直接,但它求出的估计量往往不够理想。往往不够理想。第5页,此课件共71页哦矩法点估计的例题矩法点估计的例题 例例4-1 某灯泡厂某天生产了一大批灯泡,从中抽取了某灯泡厂某天生产
5、了一大批灯泡,从中抽取了10个进行个进行寿命试验,获得数据如下(单位:小时),问该天生产的灯泡寿命试验,获得数据如下(单位:小时),问该天生产的灯泡的平均寿命是多少?的平均寿命是多少?第6页,此课件共71页哦第7页,此课件共71页哦(2)最大似然法)最大似然法(Maximum Likelihood Estimation)a、一个重要的事实、一个重要的事实p 不同的总体会产生不同的样本,对于某一特定的样本,在不了解产不同的总体会产生不同的样本,对于某一特定的样本,在不了解产生它的总体究竟为何物的观察者眼中,它来自一些总体的可能性要生它的总体究竟为何物的观察者眼中,它来自一些总体的可能性要比来自另
6、一些总体的可能性大,即一些总体更容易产生出我们所观比来自另一些总体的可能性大,即一些总体更容易产生出我们所观察到的样本。察到的样本。p举例说假定我们抽取到(举例说假定我们抽取到(x1,x2,x8),知道它来自正态总体,),知道它来自正态总体,且总体的方差是了解的,但是总体的均值未知。如下图所示。且总体的方差是了解的,但是总体的均值未知。如下图所示。二、点估计方法二、点估计方法第8页,此课件共71页哦 假定样本不是来自假定样本不是来自B就是来自就是来自A。如果样本来自。如果样本来自B,观察到它的,观察到它的可能性非常小;真正的母体若是可能性非常小;真正的母体若是A,得到样本的可能性很大。显,得到
7、样本的可能性很大。显然我们宁愿承认样本来自然我们宁愿承认样本来自A。是样本。是样本“替替”我们我们“选择选择”了了A。x6 x2 x3 x4 x5 x6 x7 x8 分布B分布A概率x第9页,此课件共71页哦b、最大似然法的概念、最大似然法的概念p上述事实诱导我们宁愿作出这样的抉择:将样本最容易来自的总体当上述事实诱导我们宁愿作出这样的抉择:将样本最容易来自的总体当作产生样本的总体。作产生样本的总体。p现在要根据从总体现在要根据从总体 中抽取得到的样本中抽取得到的样本(x1,xn)对总体中的未知数对总体中的未知数 进行估计。最大似然法是选择这样的估计量进行估计。最大似然法是选择这样的估计量 作
8、为作为 的估计值,的估计值,以便使观察结果以便使观察结果(x1,xn)出现的可能性(概率)最大。出现的可能性(概率)最大。p对于离散型变量,就是要选择对于离散型变量,就是要选择 使使p(x1)p(x2)p(xn)最大。(连乘最大。(连乘表示一次独立地抽取各个样本观察值)表示一次独立地抽取各个样本观察值)p对于连续型变量,就是要选择对于连续型变量,就是要选择 使使(x1)(x2).(xn)最大。注意最大。注意(xi)是随机变量在是随机变量在xi附近取值的概率,相当于离散型的附近取值的概率,相当于离散型的p(xi)。第10页,此课件共71页哦c、似然法函数、似然法函数 第11页,此课件共71页哦d
9、、最大似然法的定义和估计方法、最大似然法的定义和估计方法 定义定义 如果如果L(x1,x2,,xn;)在在 处达到最大值,则称处达到最大值,则称 是是的最大似然估计。的最大似然估计。为了取得为了取得 的最大似然估计,必须使似然函数的最大似然估计,必须使似然函数L达到最大值。由于达到最大值。由于对数函数是单增的,对数函数是单增的,L达到最大亦即达到最大亦即LnL达到最大。这样使达到最大。这样使LnL达达到最大来估计到最大来估计 为计算带来了许多方便。为计算带来了许多方便。根据拉格朗日定理,对未知参数求条件极值,令根据拉格朗日定理,对未知参数求条件极值,令LnL对对 的一阶导的一阶导数等于数等于0
10、,即,即dLnL/d =0=得到似然方程,所求的得到似然方程,所求的 就是似然方程中就是似然方程中 的解。的解。第12页,此课件共71页哦注意:注意:当不只一个参数需要估计时,应将当不只一个参数需要估计时,应将LnL分别对不分别对不同参数求偏导,然后解似然方程组同参数求偏导,然后解似然方程组最大似然估计法对方差的估计往往是有偏估计量,以最大似然估计法对方差的估计往往是有偏估计量,以后对线性模型估计时也是如此。后对线性模型估计时也是如此。第13页,此课件共71页哦(3)最小二乘法)最小二乘法(Least Square Estimation Method)p最小二乘法是计量经济学中应用最广泛的一种
11、估计方法。最小二乘法是计量经济学中应用最广泛的一种估计方法。p这是本课程研究的重点问题,在以后各章中将详尽地阐述它的这是本课程研究的重点问题,在以后各章中将详尽地阐述它的原理、步骤、特性和优越处。原理、步骤、特性和优越处。二、点估计方法二、点估计方法第14页,此课件共71页哦三三 点估计量的特征点估计量的特征p所谓估计量的特性指的是衡量一个统计量用以估所谓估计量的特性指的是衡量一个统计量用以估计总体参数的好坏标准。计总体参数的好坏标准。p 点估计量的一些统计性质点估计量的一些统计性质(1)线性;()线性;(2)无偏性;()无偏性;(3)有效性;)有效性;(4)最优线性无偏估计量()最优线性无偏
12、估计量(BLUE););(5)一致性)一致性第15页,此课件共71页哦(1)线性)线性p若估计量是样本观察值的线性函数,则称该估计量是线若估计量是样本观察值的线性函数,则称该估计量是线性估计量性估计量p样本均值是一个线性估计量样本均值是一个线性估计量第16页,此课件共71页哦(2)无偏性)无偏性无偏性的直观意义无偏性的直观意义 根据样本推得的估计值和真值可能不同,然而如果有根据样本推得的估计值和真值可能不同,然而如果有一系列抽样依据同一估计方法就可以得到一系列估计值,一系列抽样依据同一估计方法就可以得到一系列估计值,很自然会要求这些估计的期望值与未知参数的真值相等。很自然会要求这些估计的期望值
13、与未知参数的真值相等。这就是无偏性的概念,无偏性的直观意义是:样本估计这就是无偏性的概念,无偏性的直观意义是:样本估计量的数值在真值周围摆动,即无系统误差。量的数值在真值周围摆动,即无系统误差。第17页,此课件共71页哦无偏性的定义无偏性的定义 的真值的真值 的真值的真值有偏有偏无偏无偏第18页,此课件共71页哦例例4-3 第19页,此课件共71页哦第20页,此课件共71页哦无偏性是估计量最重要的优良性,是一个重复抽样的性质,无偏性是估计量最重要的优良性,是一个重复抽样的性质,它只能保证估计量的期望等于真值。而且,对于总体某个待它只能保证估计量的期望等于真值。而且,对于总体某个待定参数,其无偏
14、估计量不只一个。例如样本中位数也是真实定参数,其无偏估计量不只一个。例如样本中位数也是真实均值的无偏估计量。均值的无偏估计量。第21页,此课件共71页哦(3)有效性)有效性 总体某个参数总体某个参数 的无偏估计量往往不只一个,而且无偏性仅的无偏估计量往往不只一个,而且无偏性仅仅表明仅表明 的所有可能的取值按概率平均等于的所有可能的取值按概率平均等于,它的可能取值,它的可能取值可能大部分与可能大部分与 相差很大。为保证相差很大。为保证 的取值能集中于的取值能集中于 附近,必附近,必须要求须要求 的方差越小越好。所以,提出有效性标准。的方差越小越好。所以,提出有效性标准。第22页,此课件共71页哦
15、有效性的定义有效性的定义 第23页,此课件共71页哦例例4-4 比较总体均值两个无偏估计的有效性比较总体均值两个无偏估计的有效性 第24页,此课件共71页哦第25页,此课件共71页哦无偏有效估计量的意义无偏有效估计量的意义(1)一个无偏有效估计量的取值在可能范围内最密集于)一个无偏有效估计量的取值在可能范围内最密集于 附近。附近。换言之,它以最大的概率保证估计量的取值在真值换言之,它以最大的概率保证估计量的取值在真值 附近摆动。附近摆动。(2)可以证明,样本均值是总体数学期望的有效估计量。)可以证明,样本均值是总体数学期望的有效估计量。第26页,此课件共71页哦(4)最优线性无偏估计量)最优线
16、性无偏估计量 如果一个估计量是线性的和无偏的,并且在参数的所有线性如果一个估计量是线性的和无偏的,并且在参数的所有线性无偏估计量中,这个估计量的方差最小,则称这个估计量是最优无偏估计量中,这个估计量的方差最小,则称这个估计量是最优线性无偏估计量(线性无偏估计量(best linear unbiased extimator,BLUE)。)。第27页,此课件共71页哦(5)一致性)一致性“依概率收敛依概率收敛”的定义的定义若存在常数若存在常数a,使对于任何,使对于任何0,有,有则称随机变量序列则称随机变量序列n依概率收敛于依概率收敛于a.第28页,此课件共71页哦一致性一致性 一致性既是从概率又是
17、从极限性质来定义的,因此只有样一致性既是从概率又是从极限性质来定义的,因此只有样本容量较大时才起作用。本容量较大时才起作用。第29页,此课件共71页哦p一致性作为评价估计量好坏的一个标准,计量经济学家在无偏一致性作为评价估计量好坏的一个标准,计量经济学家在无偏性和一致性之间更偏重选择一致性。性和一致性之间更偏重选择一致性。p虽然一个一致估计量可能在平均意义上与真值不同,但是虽然一个一致估计量可能在平均意义上与真值不同,但是当样本容量加大时,它会变得与真值十分接近,即有偏的当样本容量加大时,它会变得与真值十分接近,即有偏的一致估计量具有大样本下的无偏性。同时,根据大数定律,一致估计量具有大样本下
18、的无偏性。同时,根据大数定律,当当n增大时,方差会变得很小,所以一致估计量具有大样本下增大时,方差会变得很小,所以一致估计量具有大样本下的的“无偏性无偏性”和和“有效性有效性”。第30页,此课件共71页哦4.3 区间估计区间估计p区间估计就是以一定的可靠性给出被估计参数的一个可能的取值范围。区间估计就是以一定的可靠性给出被估计参数的一个可能的取值范围。p一般的,假定随机变量一般的,假定随机变量X服从某一概率分布,若要对其参数进行估计,选服从某一概率分布,若要对其参数进行估计,选取容量为取容量为n的随机样本,找出两个统计量的随机样本,找出两个统计量 1(x1,xn)与与 2(x1,xn),使使P
19、(1 2)=1-其中其中(1,2)称为置信区间,称为置信区间,1-称为置信系数(置信度),称为置信系数(置信度),称称为显著性水平为显著性水平或犯第一类错误的概率或犯第一类错误的概率,一般取一般取5%或或1%。如果建立一。如果建立一个置信系数为个置信系数为95%的置信区间,那么重复建立这样的区间的置信区间,那么重复建立这样的区间100次,预期次,预期有有95次包括了真实的次包括了真实的ux。第31页,此课件共71页哦对区间估计的形象比喻对区间估计的形象比喻我们经常说某甲的成绩我们经常说某甲的成绩“大概大概80分左右分左右”,可以看成一,可以看成一个区间估计问题。(某甲的成绩个区间估计问题。(某
20、甲的成绩 为被估计的参数)为被估计的参数)P(1 2)=大概的准确程度(大概的准确程度(1-)如:如:P(75 85)=95%=1-5%“大概大概80分左右分左右”冒险率冒险率(假设检验中叫显著水平)(假设检验中叫显著水平)下限下限上限上限第32页,此课件共71页哦例例4-5 如果随机变量如果随机变量XN(2),若要根据样本估计总体均值,且方,若要根据样本估计总体均值,且方差未知,则总体均值差未知,则总体均值95的置信区间可由下式求得(样本容量的置信区间可由下式求得(样本容量为为50)即即ux的的95的置信区间为的置信区间为10.63 ux 12.36 该置信区间是随机的,它依赖于样本的取值,
21、但总体均值取该置信区间是随机的,它依赖于样本的取值,但总体均值取某一固定值,是非随机的,所有不能说某一固定值,是非随机的,所有不能说ux位于区间的概率是位于区间的概率是0.95,只能说这个区间包括真实只能说这个区间包括真实ux的概率是的概率是0.95.第33页,此课件共71页哦 2.5%95%2.5%0-2.00962.0096t分布分布(d.f.=49)第34页,此课件共71页哦一、对总体期望值的估计一、对总体期望值的估计(1)已知方差,对总体数学期望)已知方差,对总体数学期望E=进行区间估计(正态总体)进行区间估计(正态总体)第35页,此课件共71页哦第36页,此课件共71页哦/2/21-
22、第37页,此课件共71页哦假设总体服从正态分布假设总体服从正态分布N(,8),求求 的的置信区间置信区间例例4-6 本节例本节例4-1中再假设总体服从正态分布,总体方差为中再假设总体服从正态分布,总体方差为8,求电子管寿命的置信区间(求电子管寿命的置信区间(=5%)。)。第38页,此课件共71页哦(2)方差未知,对数学期望)方差未知,对数学期望E 进行区间估计进行区间估计大样本下大样本下 根据中心极限定理,根据中心极限定理,V 可以用可以用S2代替,所以仍按已知方差正代替,所以仍按已知方差正态分布的方法进行态分布的方法进行 的置信区间估计。的置信区间估计。第39页,此课件共71页哦小样本下小样
23、本下第40页,此课件共71页哦例例4-7 新生儿体重的置信区间新生儿体重的置信区间 假设新生儿(男)的体重服从正态分布。随机抽取假设新生儿(男)的体重服从正态分布。随机抽取12名新生名新生儿,测得体重如下表,试以儿,测得体重如下表,试以95%的置信度估计新生儿(男)的的置信度估计新生儿(男)的平均体重。平均体重。第41页,此课件共71页哦第42页,此课件共71页哦二、对总体方差的估计二、对总体方差的估计(未知(未知u时对总体方差进行区间估计)时对总体方差进行区间估计)第43页,此课件共71页哦总体方差区间估计的例题总体方差区间估计的例题例例4-8 冷拔丝的抗拉强度服从正态分布冷拔丝的抗拉强度服
24、从正态分布N(,2),现从一批铜,现从一批铜丝中任取丝中任取10根,测的抗拉强度数据(单位:根,测的抗拉强度数据(单位:N)如下:)如下:578、572、570、568、572、570、570、596、584、572,求,求2 的的置信度为置信度为90%的置信区间的置信区间.解:样本均值与方差的观测值分别为:解:样本均值与方差的观测值分别为:第44页,此课件共71页哦三、关于区间估计的几点说明三、关于区间估计的几点说明p在进行区间估计时,应针对不同的情况,采用不同的方法。在进行区间估计时,应针对不同的情况,采用不同的方法。例如分清分布的形式是已知或是未知;是大样本或是小样例如分清分布的形式是已
25、知或是未知;是大样本或是小样本;小样本(估计总体数学期望时)又分清是已知方差或本;小样本(估计总体数学期望时)又分清是已知方差或是未知方差等。充分利用分布信息可以得到较精确的估计。是未知方差等。充分利用分布信息可以得到较精确的估计。p一般地,一般地,越大置信度越低,置信区间越长;反之,则反。越大置信度越低,置信区间越长;反之,则反。第45页,此课件共71页哦4.4 假设检验假设检验一、假设检验的概念一、假设检验的概念二、显著性检验二、显著性检验三、置信区间法三、置信区间法四、假设检验的应用四、假设检验的应用 单正态总体的假设检验单正态总体的假设检验第46页,此课件共71页哦一、假设检验的概念一
26、、假设检验的概念p定义:称对任何一个随机变量未知分布的假设为统计假定义:称对任何一个随机变量未知分布的假设为统计假设,简称设,简称假设假设。p一个仅涉及到随机变量分布中未知参数的假设称为一个仅涉及到随机变量分布中未知参数的假设称为参数假参数假设设。一个仅涉及到随机变量分布的形式而不涉及到未知参。一个仅涉及到随机变量分布的形式而不涉及到未知参数的假设称为数的假设称为非参数假设非参数假设。p提出一个统计假设的关键是将一个实际的研究问题用数学提出一个统计假设的关键是将一个实际的研究问题用数学语言转换为统计假设。语言转换为统计假设。第47页,此课件共71页哦例例4-9.检验一个硬币是否均匀检验一个硬币
27、是否均匀 抛掷一个硬币抛掷一个硬币100次,次,“正面正面”出现出现60次,问此硬币是否均匀?次,问此硬币是否均匀?分析:分析:若用若用X描述抛掷硬币的试验,描述抛掷硬币的试验,“X=1”和和“X=0”分别表示分别表示“出出现正面现正面”和和“出现反面出现反面”。上述问题就是检验。上述问题就是检验X是否可以被认为是否可以被认为服从服从p=0.5的的01分布。分布。问题是分布形式已知,检验参数问题是分布形式已知,检验参数p=0.5的假设。记作,的假设。记作,H0:p=0.5 H1:p0.5第48页,此课件共71页哦零假设与备择假设零假设与备择假设p在统计假设在统计假设H0:p=0.5 H1:p0
28、.5中,中,H0称为零假设或称为零假设或原假设,是进行统计假设检验欲确定其是否成立的假设原假设,是进行统计假设检验欲确定其是否成立的假设体现我们进行假设检验的目的。体现我们进行假设检验的目的。pH1称为备择假设,统计假设检验是二择一的判断,当不成立称为备择假设,统计假设检验是二择一的判断,当不成立时,不得不接受它。时,不得不接受它。p假设检验包括置信区间法和显著性检验法假设检验包括置信区间法和显著性检验法第49页,此课件共71页哦例例4-10 检验新生女婴体重是否等于某个既定值检验新生女婴体重是否等于某个既定值p从从2003年出生的女婴中随机地抽取年出生的女婴中随机地抽取20名,测得平均体重名
29、,测得平均体重=3160克,标准差克,标准差=300克,根据已有的统计资料新生女婴的体重克,根据已有的统计资料新生女婴的体重=3140克,问现在与过去新生女婴的体重是否有变化?克,问现在与过去新生女婴的体重是否有变化?p分析:把分析:把2003年出生的女婴视为一个总体,用年出生的女婴视为一个总体,用X描述,问描述,问题就是判断:题就是判断:H0:EX=3140 H1:EX 3140 因为通常可以假定经过量测得到的资料是服从正态分布的,因为通常可以假定经过量测得到的资料是服从正态分布的,无须检验总体的分布形式,显然这是一个关于参数的假设检无须检验总体的分布形式,显然这是一个关于参数的假设检验问题
30、。验问题。第50页,此课件共71页哦二、显著性检验二、显著性检验(1)两类错误的概念)两类错误的概念(2)Neyman-Pearson方法方法(3)显著性水平与)显著性水平与P值值(4)几类特殊的显著性检验)几类特殊的显著性检验第51页,此课件共71页哦(1)两类错误的概念)两类错误的概念 由于假设检验是从样本到总体,因而结果不可能绝对正由于假设检验是从样本到总体,因而结果不可能绝对正确,它有可能是错误的;而且出现错误可能性的大小,确,它有可能是错误的;而且出现错误可能性的大小,也是以统计规律(小概率原理)为依据的。所可能犯的也是以统计规律(小概率原理)为依据的。所可能犯的错误有两类:错误有两
31、类:p第一类第一类弃真,原假设符合实际情况,而检验结果把它否定了。设弃真,原假设符合实际情况,而检验结果把它否定了。设犯这类错误的概率为犯这类错误的概率为,那么,那么 =p(否定否定H0/H0实际上为真实际上为真)。为显著性水平为显著性水平p第二类第二类取伪,原假设不符合实际情况,而检验结果却把它肯定取伪,原假设不符合实际情况,而检验结果却把它肯定下来。设犯这类错误的概率为下来。设犯这类错误的概率为,那么,那么 =p(接受接受H0/H0实际上不正确实际上不正确)。1-称为检验的功效称为检验的功效第52页,此课件共71页哦(2)Neyman-Pearson方法方法p自然希望犯两类错误的概率都越小
32、越好。但对一定的样自然希望犯两类错误的概率都越小越好。但对一定的样本容量本容量n,一般都不能做到犯这两类错误的概率同时都小。,一般都不能做到犯这两类错误的概率同时都小。由于减小由于减小 =增大增大 ,或者减小,或者减小 =增大增大 。一般愿意使犯。一般愿意使犯”第一类错误第一类错误“的概率的概率 较小,则拒绝错了的概率就较小较小,则拒绝错了的概率就较小,而不考虑而不考虑 。pNeyman-Pearson提出了一种方法:先固定犯提出了一种方法:先固定犯“第一类错误第一类错误”的的概率概率 ,再考虑如何减小犯,再考虑如何减小犯“第二类错误第二类错误”的概率的概率 ,也称,也称Fix ,Min 方法
33、。当方法。当 确定以后,让确定以后,让 尽量的小,尽量的小,1-就越大,就越大,称不犯称不犯“第二类错误第二类错误”的概率为的概率为“检验的功效(检验的功效(Power of test)。)。第53页,此课件共71页哦(3)显著性水平与)显著性水平与P值值 显著水平指的是犯显著水平指的是犯“第一类错误第一类错误”的可能性,在给定的小的可能性,在给定的小概率概率 下,零假设几乎是不可能发生的,可以认为零假设下,零假设几乎是不可能发生的,可以认为零假设H0是错是错的,必须抛弃它。同时,即使抛弃零假设的,必须抛弃它。同时,即使抛弃零假设H0,这时也只需,这时也只需冒冒 的风险,的风险,抛弃抛弃H0的
34、可靠性则为的可靠性则为1-。如果假设事关重大,譬如人命关载人的宇宙飞船升空或药如果假设事关重大,譬如人命关载人的宇宙飞船升空或药品试验,则必须提高差异显著水平即减小品试验,则必须提高差异显著水平即减小,使我们不能轻,使我们不能轻易地拒绝易地拒绝H0。否则,则可以降低显著水平。否则,则可以降低显著水平。第54页,此课件共71页哦检验(统计量)是统计显著检验(统计量)是统计显著的一般是指能够拒绝零假设,即观的一般是指能够拒绝零假设,即观察到的样本值与假设值不同的概率非常小,小于察到的样本值与假设值不同的概率非常小,小于 (犯第一类(犯第一类错误的概率);检验是统计不显著的,是指不能拒绝零假设。错误
35、的概率);检验是统计不显著的,是指不能拒绝零假设。为了避免在选择显著性水平时的任意性,可以计算检验的为了避免在选择显著性水平时的任意性,可以计算检验的p值。检验的值。检验的p值值(p-value)是指给定是指给定t统计量的观测值,能拒绝虚统计量的观测值,能拒绝虚拟假设的最小显著性水平。小的拟假设的最小显著性水平。小的p值是拒绝虚拟假设的证据。值是拒绝虚拟假设的证据。第55页,此课件共71页哦例例4-11:df=40,t=1.85(检验统计量的数值),则针对双侧对立假(检验统计量的数值),则针对双侧对立假设来检验虚拟假设设来检验虚拟假设 的的p值为值为 以上以上p值意味着,如果虚拟假设正确,那么
36、我们约有值意味着,如果虚拟假设正确,那么我们约有7.2%次观察到次观察到t统计量的绝对值至少和统计量的绝对值至少和1.85一样大。可以看出,一样大。可以看出,p值越小,对应值越小,对应的统计量值的统计量值t应该越大,越可能拒绝应该越大,越可能拒绝H0。面积0.0359-1.851.85面积0.0359面积0.0359第56页,此课件共71页哦如果用如果用表示检验的显著性水平(小数形式),那么表示检验的显著性水平(小数形式),那么p值值时,时,则拒绝虚拟假设,否则在则拒绝虚拟假设,否则在100%显著性水平下,不能拒绝显著性水平下,不能拒绝H0。注意注意(1)对于线性回归方程,一般软件包报告了回归
37、系数及标准对于线性回归方程,一般软件包报告了回归系数及标准误,并且给出了针对双侧对立假设的误,并且给出了针对双侧对立假设的p值,将其除以值,将其除以2,即,即可得到单侧对立假设的可得到单侧对立假设的p值;值;(2)随着样本容量的扩大,一般使用较小的显著性水平,以作为抵随着样本容量的扩大,一般使用较小的显著性水平,以作为抵偿标准误越来越小的一种办法;对于小样本容量,可以接受较大的偿标准误越来越小的一种办法;对于小样本容量,可以接受较大的显著性水平,可以让大到显著性水平,可以让大到0.20第57页,此课件共71页哦(4)几类特殊的显著性检验)几类特殊的显著性检验pt检验:未知总体方差,检验总体均值
38、检验:未知总体方差,检验总体均值单侧检验(单侧检验(one-tail test)或双边检验)或双边检验 关于关于t检验的两种类型比较见检验的两种类型比较见73页页例例4-12:H0:ux=13,H1:ux 13,并且并且 进行进行t检验。检验。第58页,此课件共71页哦p卡方显著性检验:检验总体方差卡方显著性检验:检验总体方差随机样本来自方差为随机样本来自方差为2的正态总体,其样本容量为的正态总体,其样本容量为n,样本方,样本方差为差为S2,则,则例例4-13:假定随机样本来自正态总体,样本容量为:假定随机样本来自正态总体,样本容量为35,样,样本方差为本方差为12,零假设为真实的方差为,零假
39、设为真实的方差为9;备择假设为真实的;备择假设为真实的方差不等于方差不等于9,显著性水平为,显著性水平为5%。进行卡方显著性检验。进行卡方显著性检验。卡方显著性检验小结(卡方显著性检验小结(P74)第59页,此课件共71页哦p F显著性检验:显著性检验:检验两个正态总体方差是否相等检验两个正态总体方差是否相等如果如果X、Y是来自两正态总体的随机样本,自由度分别为是来自两正态总体的随机样本,自由度分别为m和和n,则,则变量变量 例例4-14:假设男女学生分数的方差分别为:假设男女学生分数的方差分别为46.61和和83.88,其样本,其样本观察值为观察值为24、23,假设这些方差代表了来自于一更大
40、总体的样本。,假设这些方差代表了来自于一更大总体的样本。检验假设:男女学生数学分数总体同方差,显著性水平为检验假设:男女学生数学分数总体同方差,显著性水平为1。F显著性检验小结见显著性检验小结见P75第60页,此课件共71页哦三、置信区间法三、置信区间法 置信区间法提供提供某一置信度(例如置信区间法提供提供某一置信度(例如95%)的)的真实的真实的ux的取值范围,比如的取值范围,比如10.63ux12.36,如果这如果这个区间不包括零假设中的值,比如个区间不包括零假设中的值,比如ux=13,那么我们,那么我们说以说以95%的置信度拒绝该零假设。的置信度拒绝该零假设。第61页,此课件共71页哦
41、用假设检验的语言,不等式描述的置信区间称为接受区域用假设检验的语言,不等式描述的置信区间称为接受区域(acceptance region),接受区域以外的称为零假设的临界区),接受区域以外的称为零假设的临界区域(域(critical region)或拒绝区域()或拒绝区域(region of rejection),接受区,接受区域的上界和下界称为临界值(域的上界和下界称为临界值(critical values)。如果参数值在零)。如果参数值在零假设下位于接受区域内,则不拒绝零假设,但如果落在接受区域以假设下位于接受区域内,则不拒绝零假设,但如果落在接受区域以外,则拒绝零假设。外,则拒绝零假设。
42、三、置信区间法三、置信区间法第62页,此课件共71页哦通过求置信区间进行假设检验的例子通过求置信区间进行假设检验的例子 例例4-14 根据长期经验和资料分析,某砖厂生产的砖的根据长期经验和资料分析,某砖厂生产的砖的“抗断强度抗断强度”服从正态分布,方差服从正态分布,方差=1.21,今从该厂生产的,今从该厂生产的砖中随机地抽取砖中随机地抽取6块砖,测得强度如下(单位千克块砖,测得强度如下(单位千克/cm2):检):检验这批砖的平均抗断强度为验这批砖的平均抗断强度为32.50千克千克/cm2是否成立(是否成立(=0.05)?)?第63页,此课件共71页哦解:解:H0:=32.50 H1:32.50
43、首先求首先求 的置信区间:的置信区间:第64页,此课件共71页哦四、假设检验的应用四、假设检验的应用单正态总体的假设检验单正态总体的假设检验设总体设总体 N(,2),对于其参数),对于其参数,2的假设检验,讨论的假设检验,讨论3种种情况:情况:已知方差已知方差 2,检验假设,检验假设H0:=0未知方差未知方差 2,检验假设,检验假设H0:=0未知期望未知期望 ,检验假设,检验假设H0:2=20其中,其中,H0中的中的 0和和 20均是已知的数。均是已知的数。第65页,此课件共71页哦已知已知总体方差,检验总体均值等于定值总体方差,检验总体均值等于定值1、提出零假设、提出零假设 H0:=0 H1
44、:0 (双侧检验)(双侧检验)2、根据抽样所得样本计算检验统计量、根据抽样所得样本计算检验统计量3、确定显著水平、确定显著水平=0.05(或(或0.01)和相应的临界值)和相应的临界值u/24、将计算的、将计算的U与与u/2进行比较。如果进行比较。如果U落在拒绝域内,则拒绝落在拒绝域内,则拒绝H0,否则接收否则接收H0第66页,此课件共71页哦未知总体方差,检验总体均值等于定值未知总体方差,检验总体均值等于定值 例例4-15 从从2003年出生的新生女婴中随机抽取年出生的新生女婴中随机抽取20 个,测得其平个,测得其平均体重为均体重为3160克,样本标准差为克,样本标准差为300克,根据过去的
45、资料,克,根据过去的资料,新生女婴平均体重等于新生女婴平均体重等于3140 克,问现在女婴体重与过去有克,问现在女婴体重与过去有无差别(无差别(=0.01)?)?第67页,此课件共71页哦第68页,此课件共71页哦未知总体数学期望,检验总体方差等于定值未知总体数学期望,检验总体方差等于定值 例例4-16 某铁厂的铁水含碳量某铁厂的铁水含碳量 在正常情况下服从正态分布,在正常情况下服从正态分布,现对操作工艺进行改进,然后抽取现对操作工艺进行改进,然后抽取5炉铁水测得含碳量数据炉铁水测得含碳量数据如下:如下:问是否可以认为新工艺炼出的铁水含碳量的方差为原先的问是否可以认为新工艺炼出的铁水含碳量的方差为原先的0.1082(=0.05)?第69页,此课件共71页哦第70页,此课件共71页哦统计检验的基本步骤统计检验的基本步骤第一步:表述零假设和备择假设;第一步:表述零假设和备择假设;第二步:选择检验统计量;第二步:选择检验统计量;第三步:确定检验统计量的概率分布;第三步:确定检验统计量的概率分布;第四步:选择显著水平,即犯第一类错误的概率;第四步:选择显著水平,即犯第一类错误的概率;第五步:选择置信区间法或显著检验方法第五步:选择置信区间法或显著检验方法第71页,此课件共71页哦
限制150内