第10章、紫外吸收光谱分析.ppt
《第10章、紫外吸收光谱分析.ppt》由会员分享,可在线阅读,更多相关《第10章、紫外吸收光谱分析.ppt(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章、紫外吸收光谱分析ultravioletspectrometry,UV第一节第一节 紫外吸收光谱基本原理紫外吸收光谱基本原理principlesofultravioletspectrometry第二节第二节 紫外可见分光光度计紫外可见分光光度计ultravioletspectrometer第三节第三节 紫外吸收光谱的应用紫外吸收光谱的应用applicationofUltravioletspectrometry一、一、紫外吸收光谱的产生紫外吸收光谱的产生formationofUV二、二、有机物紫外吸收光谱有机物紫外吸收光谱ultravioletspectrometryoforganicco
2、mpounds三、金属配合物的紫外吸收光谱三、金属配合物的紫外吸收光谱ultravioletspectrometryofmetalcomplexometriccompounds第一节第一节紫外吸收光谱分析基本原理紫外吸收光谱分析基本原理principlesofUV一、紫外吸收光谱的产生一、紫外吸收光谱的产生formationofUV1.1.概述概述紫外吸收光谱:分子价电子能级跃迁。紫外吸收光谱:分子价电子能级跃迁。波长范围:波长范围:100-800nm.(1)远紫外光区远紫外光区:100-200nm(2)近紫外光区近紫外光区:200-400nm(3)可见光区可见光区:400-800nm2503
3、00350400nm1234 可用于结构鉴定和定量分析。可用于结构鉴定和定量分析。电子跃迁的同时,伴随着振电子跃迁的同时,伴随着振动转动能级的跃迁动转动能级的跃迁;带状光谱。带状光谱。2.物质对光的选择性吸收及吸收曲线M +热M+荧光或磷光E=E2 -E1=h量子化;选择性吸收吸收曲线与最大吸收波长 max 用不同波长的单色光照射,测吸光度;M+h M*基态基态激发态激发态E1(E)E2吸收曲线:同一种物质对不同波长光的吸光度同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为不同。吸光度最大处对应的波长称为最最大吸收波长大吸收波长maxmax不同浓度的同一种物质,其吸收曲不同浓度的
4、同一种物质,其吸收曲线形状相似线形状相似maxmax不变。而对于不同物质,不变。而对于不同物质,它们的吸收曲线形状和它们的吸收曲线形状和maxmax则不同。则不同。吸收曲线可以提供物质的结构信息,并作为物质定性分吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。析的依据之一。吸收曲线:不同浓度的同一种物质,在某一定波长下吸光度不同浓度的同一种物质,在某一定波长下吸光度 A A 有差异,在有差异,在maxmax处吸光度处吸光度A A 的差异最大。此特性可作作的差异最大。此特性可作作为物质定量分析的依据。为物质定量分析的依据。在在maxmax处吸光度随浓度变化的幅度最大,所以测定处吸光
5、度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。依据。3.电子跃迁与分子吸收光谱物质分子内部三种运动形式:物质分子内部三种运动形式:(1 1)电子相对于原子核的运动;)电子相对于原子核的运动;(2 2)原子核在其平衡位置附近的相对振动;)原子核在其平衡位置附近的相对振动;(3 3)分子本身绕其重心的转动。)分子本身绕其重心的转动。分子具有三种不同能级:电子能级、振动能级和转动能级分子具有三种不同能级:电子能级、振动能级和转动能级三种能级都是量子化的,且各自具有相应的能量。三种能级都是量子化的,且各自具有相应的
6、能量。分子的内能:电子能量分子的内能:电子能量Ee、振动能量振动能量Ev、转动能量、转动能量Er即即:EEe+Ev+Erevr能级跃迁 电子能级间跃电子能级间跃迁的同时,总伴迁的同时,总伴随有振动和转动随有振动和转动能级间的跃迁。能级间的跃迁。即电子光谱中总即电子光谱中总包含有振动能级包含有振动能级和转动能级间跃和转动能级间跃迁产生的若干谱迁产生的若干谱线而呈现宽谱带线而呈现宽谱带。讨论:(1 1)转动能级间的能量差转动能级间的能量差r r:0.0050.0050.0500.050eVeV,跃迁跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱;产生吸收光谱位于远红外区。远红外光谱或分子转
7、动光谱;(2 2)振动能级的能量差振动能级的能量差v v约为:约为:0.050.05eVeV,跃迁产跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱;生的吸收光谱位于红外区,红外光谱或分子振动光谱;(3 3)电子能级的能量差电子能级的能量差e e较大较大1 12020eVeV。电子跃迁产生电子跃迁产生的吸收光谱在紫外的吸收光谱在紫外 可见光区,紫外可见光区,紫外 可见光谱或分子的电可见光谱或分子的电子光谱;子光谱;讨论:(4 4)吸收光谱的波长分布是由产生谱带的跃迁能级间的)吸收光谱的波长分布是由产生谱带的跃迁能级间的能量差所决定,反映了分子内部能级分布状况,是物质定性能量差所决定,反映了
8、分子内部能级分布状况,是物质定性的依据;的依据;(5 5)吸收谱带的强度与分子偶极矩变化、跃迁几率有关,)吸收谱带的强度与分子偶极矩变化、跃迁几率有关,也提供分子结构的信息。通常将在最大吸收波长处测得的摩也提供分子结构的信息。通常将在最大吸收波长处测得的摩尔吸光系数尔吸光系数maxmax也作为定性的依据。也作为定性的依据。不同物质的不同物质的maxmax有时有时可能相同,但可能相同,但maxmax不一定相同;不一定相同;(6 6)吸收谱带强度与该物质分子吸收的光子数成正比,定)吸收谱带强度与该物质分子吸收的光子数成正比,定量分析的依据。量分析的依据。二、有机物吸收光谱与电子跃迁二、有机物吸收光
9、谱与电子跃迁ultravioletspectrometryoforganiccompounds1 1紫外紫外 可见吸收光谱可见吸收光谱 有机化合物的紫外可见吸收光谱是三种电子跃迁的结果:电子、电子、n电子。分子轨道理论分子轨道理论:成键轨道反键轨道。当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁四种跃迁所需能量大小顺序大小顺序为:n n n s s *s s*RKE,Bn ECOHn s sH2跃迁 所需能量最大;所需能量最大;电子只有吸收远紫外光的能量才能发电子只有吸收远紫外光的能量才能发生跃迁;生跃迁;饱和烷烃的分子吸收光谱出现在远紫外区;饱和烷烃的分子吸
10、收光谱出现在远紫外区;吸收波长吸收波长200 nm200 nm;例:甲烷的例:甲烷的maxmax为为125125nm,nm,乙烷乙烷maxmax为为135135nmnm。只能被真空紫外分光光度计检测到;只能被真空紫外分光光度计检测到;作为溶剂使用;作为溶剂使用;s sp p*s s*RKE,Bnp p E3n跃迁 所需能量较大。吸收波长为150250nm,大部分在远紫外区,近紫外区仍不易观察到。含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n*跃迁。4 跃迁 所需能量较小,吸收波长处于远紫外区的近紫外端或近紫外区,max一般在104Lmol1cm1以上,属于强吸收。(1 1)不饱
11、和烃不饱和烃*跃迁跃迁 乙烯*跃迁的max为162nm,max为:1104 Lmol-1cm1。K带共轭非封闭体系的*跃迁C=C发色基团,但*200nm。max=162nm助色基团取代(K带)发生红移。165nm217nm (HOMO LVMO)max 基基-是由非环或六环共轭二烯母体决定的基准值;是由非环或六环共轭二烯母体决定的基准值;无环、非稠环二烯母体:max=217nm共轭烯烃(不多于四个双键)*跃迁吸收峰位置可由伍德伍德沃德沃德菲泽菲泽 规则估算。max=基基+ni i(2)共轭烯烃中的)共轭烯烃中的 *异环(稠环)二烯母体:异环(稠环)二烯母体:max=214 nm同环(非稠环或稠
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10 紫外 吸收光谱 分析
限制150内