第八章 图与网络分析PPT讲稿.ppt
《第八章 图与网络分析PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第八章 图与网络分析PPT讲稿.ppt(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八章 图与网络分析第1页,共83页,编辑于2022年,星期三本章内容|图与网络的基本知识|树|最短路问题|最大流问题|最小费用流问题第2页,共83页,编辑于2022年,星期三BDACABCD哥尼斯堡七空桥哥尼斯堡七空桥一笔画问题一笔画问题1图与网络的基本知识环球旅行问题环球旅行问题第3页,共83页,编辑于2022年,星期三一个图是由点集V=vj和V中元素的无序对的一个集合E=ek构成的二元组,记为G=(V,E),其中V 中的元素vj 叫做顶点,V表示图G的点集合;E中的元素ek 叫做边,E 表示图 G 的边集合。v1v2v3v4v5v6e1e2e3e4e5e6e7e8e9e10例例图图1 1
2、定义定义1 1图及其分类第4页,共83页,编辑于2022年,星期三如果一个图是由点和边所构成的,则称其为无向图,记作G=(V,E),连接点的边记作vi,vj,或者vj,vi。如果一个图是由点和弧所构成的,那么称它为有向图,记作D=(V,A),其中V 表示有向图D 的点集合,A 表示有向图D 的弧集合。一条方向从vi指向vj 的弧,记作(vi,vj)。v4v6v1v2v3v5V=v1,v2,v3,v4,v5,v6,A=(v1,v3),(v2,v1),(v2,v3),(v2,v5),(v3,v5),(v4,v5),(v5,v4),(v5,v6)图图2图及其分类第5页,共83页,编辑于2022年,星
3、期三一条边的两个端点是相同的,那么称为这条边是环。如果两个端点之间有两条以上的边,那么称为它们为多重边。一个无环,无多重边的图称为简单图,一个无环,有多重边的图称为多重图。每一对顶点间都有边相连的无向简单图称为完全图。有向完全图则是指任意两个顶点之间有且仅有一条有向边的简单图。定义定义2 2定义定义3 3图及其分类第6页,共83页,编辑于2022年,星期三定义定义4 4图G=(V,E)的点集V可以分为两个非空子集X,Y,即XY=V,XY=,使得E中每条边的两个端点必有一个端点属于X,另一个端点属于Y,则称G为二部图(偶图),有时记作G=(X,Y,E)。X:v1,v3,v5Y:v2,v4,v6v
4、1v3v5v6v4v2图及其分类第7页,共83页,编辑于2022年,星期三v1v2v3v4v5v6e1e2e3e4e5e6e7e8e9e10度为零的点称为弧立点,度为1的点称为悬挂点。悬挂点的关联边称为悬挂边。度为奇数的点称为奇点,度为偶数的点称为偶点。以点v为端点的边的个数称为点v 的度(次),记作 。图中d(v1)=4,d(v6)=4(环计两度)定义定义5 5顶点的次第8页,共83页,编辑于2022年,星期三有向图中,以vi为始点的边数称为点vi的出次,用 表示;以vi为终点的边数称为点vi 的入次,用 表示;vi 点的出次和入次之和就是该点的次。所有顶点的入次之和等于所有顶点的出次之和。
5、定理定理1 1定理定理2 2所有顶点度数之和等于所有边数的2倍。在任一图中,奇点的个数必为偶数。定义定义6 6顶点的次第9页,共83页,编辑于2022年,星期三图G=(V,E),若E是E的子集,V是V的子集,且E中的边仅与V中的顶点相关联,则称G=(V,E)是G的一个子图。特别是,若V=V,则G称为G的生成子图(支撑子图)。v1v2v3v4v5v6v7e1e2e3e4e5e6e7e8e9e10e11(a)e5e7v1v2v5v6v7e1e6e8(b)子图v1v2v3v4v5v6v7e1e6e7e9e10e11(c)支撑子图定义定义7 7子图第10页,共83页,编辑于2022年,星期三在实际应用
6、中,给定一个图G=(V,E)或有向图D=(V,A),在V中指定两个点,一个称为始点(或发点),记作v1,一个称为终点(或收点),记作vn,其余的点称为中间点。对每一条弧 ,对应一个数 ,称为弧上的“权”。通常把这种赋权的图称为网络。定义定义8 8无向图G=(V,E),若图G中某些点与边的交替序列可以排成(vi0,ei1,vi1,ei2,vik-1,eik,vik)的形式,且eit=(vit-1,vit)(t=1,k),则称这个点边序列为连接vi0与vik的一条链,链长为k。点边列中没有重复的点和重复边者为初等链。连通图第11页,共83页,编辑于2022年,星期三连通图无向图G中,连结vi0与v
7、ik的一条链,当vi0与vik是同一个点时,称此链为圈。圈中既无重复点也无重复边者为初等圈。定义定义9 9定义定义1010一个图中任意两点间至少有一条链相连,则称此图为连通图。任何一个不连通图都可以分为若干个连通子图,每一个称为原图的一个分图。对于有向图可以类似于无向图定义链和圈,初等链、圈,此时不考虑边的方向。而当链(圈)上的边方向相同时,称为道路(回路)。对于无向图来说,道路与链、回路与圈意义相同。第12页,共83页,编辑于2022年,星期三对于网络(赋权图)G=(V,E),其中边有权 ,构造矩阵 ,其中:称矩阵A为网络G的权矩阵。设图G=(V,E)中顶点的个数为n,构造一个矩阵 ,其中:
8、称矩阵A为网络G的邻接矩阵。定义定义1111定义定义1212图的矩阵表示当G为无向图时,邻接矩阵为对称矩阵。第13页,共83页,编辑于2022年,星期三例例权矩阵为:邻接矩阵为:邻接矩阵为:v5v1v2v3v4v64332256437图的矩阵表示第14页,共83页,编辑于2022年,星期三欧拉回路与中国邮路问题定义定义1313 连通图G中,若存在一条道路,经过每边一次且仅一次,则称这条路为欧拉道路。若存在一条回路,经过每边一次且仅一次,则称这条回路为欧拉回路。具有欧拉回路的图称为欧拉图(E图)。在引言中提到的哥尼斯堡七桥问题就是要在图中寻找一条欧拉回路。定理定理3 3无向连通图G是欧拉图,当且
9、仅当G中无奇点。定理定理4 4连通有向图G是欧拉图,当且仅当它每个顶点的出次等于入次。第15页,共83页,编辑于2022年,星期三欧拉回路与中国邮路问题定理定理5 5已知图G*=G+E1无奇点,则 最小的充分必要条件为:(1)每条边最多重复一次;(2)对图G中每个初等圈来讲,重复边的长度和不超过圈长的一半。第16页,共83页,编辑于2022年,星期三本章内容|图与网络的基本知识|树|最短路问题|最大流问题|最小费用流问题第17页,共83页,编辑于2022年,星期三2树ACBEDGFIHJ KNML运动员乒乓球单打比赛第18页,共83页,编辑于2022年,星期三树的概念和性质定理定理6 6定义定
10、义1414连通且不含圈的无向图称为树。树中次为1的点称为树叶,次大于1的点称为分枝点。图T=(V,E),|V|=n,|E|=m,则下列关于树的说法是等价的。(1)T是一个树。(2)T无圈,且m=n-1。(3)T连通,且m=n-1。(4)T无圈,但每加一新边即得惟一一个圈。(5)T连通,但任舍去一边就不连通。(6)T中任意两点,有惟一链相连。第19页,共83页,编辑于2022年,星期三一个图G 有生成树的充要条件是G 是连通图。v1v2v3v4v5v1v2v3v4v5设图 是图G=(V,E)G=(V,E)的一支撑子图,如果图 是一个树,那么称K K 是G G 的一个生成树(支撑树),或简称为图G
11、 G 的树。图G G中属于生成树的边称为树枝,不在生成树中的边称为弦。定义定义1515定理定理7 7图的生成树第20页,共83页,编辑于2022年,星期三(一)(一)避圈法避圈法 在图中任取一条边e1,找一条与e1不构成圈的边e2,再找一条与e1,e2不构成圈的边e3。一般设已有e1,e2,ek,找一条与e1,e2,ek中任何一些边不构成圈的边ek+1,重复这个过程,直到不能进行为止。第21页,共83页,编辑于2022年,星期三e5v1v2v5e2e3e1e6e7e8e4v4v1v2e1v3e2e4v4v5e6v3v1v2v3v5e1e6e8e4v4第22页,共83页,编辑于2022年,星期三
12、(二)(二)破圈法破圈法第23页,共83页,编辑于2022年,星期三用破圈法求出下图的一个生成树。v1v2v3v4v5e1e2e3e4e5e6e7e8v1v2v3v4v5e2e4e6e8v1v2v3v4v5e1e2e3e4e5e6e7e8第24页,共83页,编辑于2022年,星期三最小生成树问题定义定义1616如果图 是图G的一个生成树,那么称E1上所有边的权的和为生成树T 的权,记作S(T)。如果图G的生成树T*的权S(T*),在G 的所有生成树T 中的权最小,即那么称T*是G 的最小生成树。某六个城市之间的道路网如图所示,要求沿着已知长度的道路联结六个城市的电话线网,使电话线的总长度最短。
13、v1v2v3v4v5v66515723445v1v2v3v4v5v612344第25页,共83页,编辑于2022年,星期三v1v2v3v4v514231352根据破圈法和避圈法两种方式得到了图的两个不同的支撑树,由此可以看到连通图的支撑树不是唯一的。第26页,共83页,编辑于2022年,星期三|最小树的两种算法 算法1(Kruskal算法)算法2(破圈法)第27页,共83页,编辑于2022年,星期三|树根及其应用定义定义1717若一个有向图在不考虑边的方向时是一棵树,则称这个有向图为有向树。定义定义1818有向树T,恰有一个结点入次为0,其余各点入次均为1,则称T为根树(又称外向树)。定义定义
14、1919在根树中,若每个顶点的出次小于或等于m,称这棵树为m叉树。若每个顶点的出次恰好等于m或零,则称这棵树为完全m叉树。当m=2时,称为二叉树、完全二叉树。第28页,共83页,编辑于2022年,星期三本章内容|图与网络的基本知识|树|最短路问题|最大流问题|最小费用流问题第29页,共83页,编辑于2022年,星期三最短路的一般提法为:设 为连通图,图中各边 有权 (表示 之间没有边),为图中任意两点,求一条路 ,使它为从 到 的所有路中总权最短。即:最小。3最短路问题(一一)狄克斯屈拉狄克斯屈拉(Dijkstra)算法算法适用于wij00,给出了从vs到任意一个点vj的最短路。Dijkstr
15、a算法是在1959年提出来的。目前公认,在所有的权wij 0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。第30页,共83页,编辑于2022年,星期三算法步骤:算法步骤:1.给始点vs以P标号 ,这表示从vs到 vs的最短距离为0,其余节点均给T标号,2.设节点 vi 为刚得到P标号的点,考虑点vj,其中 ,且vj为T标号。对vj的T标号进行如下修改:3.比较所有具有T标号的节点,把最小者改为P标号,即:当存在两个以上最小者时,可同时改为P标号。若全部节点均为P标号,则停止,否则用vk代替vi,返回步骤(2)。第31页,共83
16、页,编辑于2022年,星期三例例9用Dijkstra算法求下图从v1到v8的最短路。解解(1)首先给v1以P标号,给其余所有点T标号。(2)(3)(4)v1v7v2v3v6v4v8v54594546467157比较所有T标号,T(v2)最小,令P(v2)=4,并记录路径(v1,v2)第32页,共83页,编辑于2022年,星期三比较所有T标号,T(v3)最小,令P(v3)=6,并记录路径(v1,v3)比较所有T标号,T(v5)最小,令P(v5)=8,并记录路径(v2,v3)比较所有T标号,T(v4)最小,令P(v4)=9,并记录路径(v2,v4)比较所有T标号,T(v6)最小,令P(v6)=13
17、,并记录路径(v5,v6)第33页,共83页,编辑于2022年,星期三比较所有T标号,T(v7)最小,令P(v7)=14,并记录路径(v7,v8)因为只有一个T标号T(v8)最小,令P(v8)=15,并记录路径(v7,v8),v1到v8之最短路为:v2v1v7v5v8 Dijkstra算法仅适合于所有的权wij=0的情形。如果当赋权有向图中存在有负权弧时,则该算法失效。第34页,共83页,编辑于2022年,星期三v1v9v8v7v6v5v4v3v23333342.55222140如图,有一批货物要从v1运到v9,弧旁数字表示该段路长,求最短运输路线。标号法练习第35页,共83页,编辑于2022
18、年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 3第36页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 3第37页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03
19、34 4第38页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 34 4第39页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 34 45 5第40页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34
20、42.52.55 52 22 22 21 14 40 03 34 45 5第41页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 34 46 66 65 5第42页,共83页,编辑于2022年,星期三v1v1v9v9v8v8v7v7v6v6v5v5v4v4v3v3v2v23 33 33 33 33 34 42.52.55 52 22 22 21 14 40 03 34 46 66 65 5第43页,共83页,编辑于2022年,星期三v1v1v
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八章 图与网络分析PPT讲稿 第八 网络分析 PPT 讲稿
限制150内