《巧算和速算方法(共40页).doc》由会员分享,可在线阅读,更多相关《巧算和速算方法(共40页).doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上校本课程 数学计算方法目 录第一讲 生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:1214=?解: 1 1 = 1 1214=168注:个位相乘,不够两位数要用0占位。.头相同,尾互补(尾相加等于10):口诀:一个头加后,头乘头,尾乘尾。例:2327=?解:212327=621注:个位相乘,不够两位数要用0占位。.第一个乘数互补,另一个乘数数字相同:口诀:一个头加后,头乘头,尾乘尾。例:3744=?解:3+1=444=1674=283744=1628注:个位相乘,不够两位数要用0占位。.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:2
2、141=?解:24=82+4=611=12141=861.11乘任意数:口诀:首尾不动下落,中间之和下拉。例:1123125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾1123125=注:和满十要进一。.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13326=?解:13个位是333+2=1132+6=1236=1813326=4238注:和满十要进一。第二讲 常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以
3、计算为1+2+99+100所以,123499100=1011002=5050 “3+5+7+97+99=?3+5797+99=(993)492= 2499。这种算法的思路,见于书籍中最早的是我国古代的张丘建算经。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。问她一共织了多少布?张丘建在算经上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二
4、匹一丈”。这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是:51在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是 :1+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是63
5、0=180(尺)但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。所以,这妇女30 天织的布是1802=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。第三讲 常用巧算速算中的思维与方法(2)方法一:分组计算一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。例如:求1 到10 亿这10 亿个自然数的数字之和。这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是12345+6+78+9+10+1+1+12=5l。显然,10 亿个自然数的数字之和,如果一个
6、一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:0 和999,999,999;1 和999,999,998;2 和999,999,997;3 和999,999,996;4 和999,999,995;5 和999,999, 994; 依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如0+9+9+9+999999=811+9+9999+9+9+98=812+9+9999+9+
7、9+97=81最后的一个数1,000,000,000 不成对,它的数字之和是1。所以,此题的计算结果是(81500,000,000)1=40,500,000,0001=40,500,000,001方法二:由小推大计算复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如:(1)计算下面方阵中所有的数的和。这是个“100100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“55”的方阵,如下图(图4.1)所示。容易看到,对角线上五个“5”之和为25。这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现
8、,这五个斜行,每行数之和都是25。所以,“55”方阵的所有数之和为255=125,即53=125。于是,很容易推出大的数阵“100100”的方阵所有数之和为1003=1,000,000。(2)把自然数中的偶数,像图4.3 那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三第五列。那么2002 出现在哪一列:列数一二三四五246816141210182022243230282634363840 图4.3因为从2 到2002,共有偶数20022=1001(个)。从前到后,是每8 个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按
9、由小到大的顺序)。所以,由10018=1251,可知这1001 个偶数可以分为125 组,还余1 个。故2002 应排在第二列。方法三:凑整巧算用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如(1)99.9+11.1=(9010)+(9+1)(0.9+0.1)=111(2)9979986=(9+1)(973)(9982)=101001000=1110(3)125125125125120125125125=155125125125(120+5)125125+125-5=1258-5=1000-5=995第四讲 常用巧算速算中的思维与方法(3)方法一:巧妙试商除数是两位数的除法,可以采用一
10、些巧妙试商方法,提高计算速度。(1)用“商五法”试商。当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如7014=5,12525=5。当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。例如124824=52,238545=53(2)同头无除商八、九。“同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。574258=99,417648=87。(3)用“商九法”试商。当
11、被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10 倍时,可以一次定商为“9”。一般地说,假如被除数为m,除数为n,只有当9nm10n 时,n 除m 的商才是9。同样地,10nmn11n。这就是我们上述做法的根据。例如450849=92,648072=90。(4)用差数试商。当除数是11、12、1318 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为
12、5。若不准确,只要调小1 就行了。例如147618=82(18 与14 差4,初商为8,经试除,商8正确);127817=75(17 与12 的差为5,初商为7,经试除,商7 正确)。为了便于记忆,我们可将它编成下面的口诀:差一差二商个九,差三差四八当头;差五差六初商七,差七差八先商六;差数是九五上阵,试商快速无忧愁。方法二:恒等变形恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。例如(1)183268=(1832-32)(68+32)=1800100=1900(2)359.7-9.9=(359.7+0.1)-(
13、9.9+O.1)=359.8-10=349.8第五讲 常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。(1) 拆成两个分数相减。例如又如(2)拆成两个分数相加。例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。例如(注意:分数
14、减法要用减数的原分母减去被减数的原分母。)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。例如做这道题,按先通分后相加的一般办法,势必影响解题速度。现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。第六讲 常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。(1)分母相同的所有真分数相加。求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除
15、以2,就能得出结果。这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。(1)减数凑整。例如(2)交换位置。例如在这两种方法中,第(1)种“凑整”法,也可以运用到带分数的加法中去。例如第七讲 常用巧算速算中的思维与方法(6)方法一:带分数乘法有些特殊的带分数相乘,可以采用一些特殊的巧算方法。(1)相乘的两个带分数整数部分相同,分数
16、部分的和是1,则乘积也是个带分数,它的整数部分是一个因数的整数部分乘以比它大1 的数,分数部分是两个因数的分数部分的乘积。例如(2)相乘的两个带分数整数部分相差1,分数部分和为1,则积也是个带分数,它用较大数的整数部分的平方,减去分数部分的平方,所得的差就是这两个带分数的乘积。例如(注:这是根据“(ab)(a-b)=a2-b2”推出来的。)(3)相乘的两个带分数,整数部分都是1,分子也都是1,分母相差1,则乘积也是个带分数。这个带分数的整数部分是1,分子是2,分母与较大因数的分母相同。例如读者自己去试一试,此处略)。方法二:两分数相除有些分数相除,可以采用以下的巧算方法:(1)分子、分母分别相
17、除。在个别情况下,分数除法可沿用整数除法的做法:用分子相除的商作分子,用分母相除的商作分母。不过,这只有在被除数的分子、分母,分别是除数的分子、分母的整数倍数的情况下,计算才比较简便。例如(2)分母相除,一次得商。在两个带分数相除的算式中,当被除数和除数的整数与分母调换了位置,而它们的分子又相同时,根据分数除法法则,只要用原除数的分母除以被除数的分母,所得的数就是它们的商。例如(注:用除法法则可以推出这种方法,此处略。)第八讲 小数的速算与巧算【知识精要】凑整法是小数加减法速算与巧算运用的主要方法。用的时候主要看末位。但是小数计算中“小数点”一定要对齐。【例题精讲】凑整法例1、 计算5.6+2
18、.38+4.4+0.62。【分析】5.6 与4.4 刚好凑成10,2.38 与0.62 刚好凑成3,这样先凑整运算起来会更加简便。【解答】原式=(5.6+4.4)+(2.38+0.62)=10+3=13【评注】凑整,特别是“凑十”、“凑百”等,是加减法速算的重要方法。例2、计算:1.999+19.99+199.9+1999。【分析】因为小数计算起来容易出错。刚好1999 接近整千数2000,其余各加数看做与它接近的容易计算的整数。再把多加的那部分减去。【解答】 1.999+19.99+199.9+1999=2+20+200+2000-0.001-0.01-0.1-1=2222-1.111=22
19、20.889【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,我们也可以引申为读整法,譬如此题。“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚才“多加的”要“减掉”。“多减的”要“加上”!第九讲 乘法速算1一前数相同的:1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)10+AB方法:百位为二,个位相乘,得数为后积,满十前一。例:131713 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了)3 7 = 21-221即1317= 2211.2.十位是1,个位不互补,即A
20、=C=1, B+D10,S=(10+B+D)10+AB方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。例:151715 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了)5 7 = 35-255即1517 = 2551.3.十位相同,个位互补,即A=C,B+D=10,S=A(A+1)10+AB方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56 54(5 + 1) 5 = 30- -6 4 = 24-30241.4.十位相同,个位不互补,即A=C,B+D10,S=A(A+1)10+AB方法1:先头加一再乘
21、头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67 64(6+1)6=4274=287+4=1111-10=14228+60=4288-4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:67 646 6 = 36- -(4 + 7)6 = 66 -4 7 = 28-4288第十讲 乘法速算2二、后数相同的:2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A10C+101方法:十位与十位相乘,得数为前积,加上101.。- -8 2
22、= 16- -101-17012.2. 个位是1,十位不互补 即 B=D=1, A+C10 S=10A10C+10C+10A +1方法:十位数乘积,加上十位数之和为前积,个位为1.。例:71 9170 90 = 63 - -70 + 90 = 16 -1-64612.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A10C+25方法:十位数乘积,加上十位数之和为前积,加上25。例:35 753 7+ 5 = 26- -25-26252.4个位是5,十位不互补 即 B=D=5, A+C10 S=10A10C+525方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位
23、相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例: 75 957 9 = 63 - -(7+ 9) 5= 80 -25-71252.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A10C+B100+B2方法:十位与十位相乘加上个位,得数为前积,加上个位平方。例:86 268 2+6 = 22- -36-22362.6.个位相同,十位非互补方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然例:734374+3=3197+4=113109 +30=3139-3139第十一讲 乘法速算32.7.个位相同
24、,十位非互补速算法2方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10例:734374=2892809+(7+4)310=2809+1130=2809+330=3139-3139三、特殊类型的:3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例: 66 37(3 + 1) 6 = 24- -6 7 = 42-2442第十二讲 乘法速算43.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得
25、数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然例:3844(3+1)4=168*4=3216323+8=1111-10=11632+40=1672-1672第十三讲 乘法速算53.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然例:4675(4+1)*7=356*5=305-7=-22*4=83530-80=3450-34503.4、一因数数首比尾小一,一因数
26、十位与个位相加等于9的两位数相乘。方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。例:563610-6=4,3+1=4,369也等于45*(10-6)=204*(10-6)=16“注:(10-6)也可以写作(3+1)和(369)”-20163.5、两因数数首不同,尾互补的两位数相乘。方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然例:7456(7+1)*5=404*6=247-5=22*6=1212*10=1
27、204024+120=4144-4144第十四讲 乘法速算6 3.6、两因数首尾差一,尾数互补的算法方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积例:2436323*3-1=862=36100-36=64-8643.7、近100的两位数算法方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)例:9391100-91=993-9=84100-93=77*9=63-84633.8、头互补,尾不同的两位数乘法方法:先确定乘数与被乘数,前两位为将被乘数的头和乘数的头相乘加上乘数的个位数。后
28、两位为被乘数与乘数尾数的积。再看被乘数末尾的数比乘数末尾数字小几或大几,小几就减几个乘数的头乘十,反之亦然例:22812*8+1=172*1=22=1+11702+1*80=1782-1782、平方速算一、求1119 的平方同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一例:17 1717 7 = 24-7 7 = 49-289二、个位是5 的两位数的平方同上1.3,十位加1 乘以十位,在得数的后面接上25。例:35 35(3 + 1) 3 = 12-25-1225三、十位是5 的两位数的平方同上2.5,个位加25,在得数的后面接上个位平方。例: 53 53
29、25 + 3 = 28-3 3 = 9-2809四、2150 的两位数的平方求2550之间的两数的平方时,记住125的平方就简单了, 1119参照第一条,下面四个数据要牢记:21 21 = 44122 22 = 48423 23 = 52924 24 = 576求2550 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。例:37 3737 - 25 = 12-(50 - 37)2 = 169-1369第十五讲 乘法速算7五、知道平方后的速算5.1 相邻奇(偶)数的速算方法,取平均数的平方减去1例:21*23222=484,484-1=48
30、3-4835.2 两数相加为100的速算(限用于小数为25-49)方法:将大数减去50,再用2500减去差的平方例:36*6464-50=142500-142=2500-196=2304-23045.3 两数相加为100的速算(限用于小数为1-25)方法,将小数乘以100,减去小数的平方即可例:11*891100-112=1100-121=979-9795.4(三位乘三位)两因数第一位相同,后两位互补的乘法方法:前两位为被乘数第一位加1和另一个被乘数第一位的积;后面四位为两个数字中每个数末尾两位的积例:436*46464-50=142500-142=2500-196=23044*5=20-5.
31、5 和为200的两数乘法方法:将大数百位上的1直接去掉,再用10000减去去掉后数的平方例:127*73272=72910000-729=9271-92715.6 两数字(三位数)后两位互补,百位数差一的乘法方法:将大数百位上的数字直接去掉,再用大数平方减一作为前两位,后四位为10000减去去掉后数的平方例:217*18322=310000-172=10000=289=9711-397115.7 十位数相差2,个位数相同的乘法方法:取平均数的平方减去100例:25*45(25+45)2=35352-100=1125-11255.8 百位互补,后两位相同的乘法方法:取两数的百位相乘加上并乘以10
32、后加上后两位为前两位,后面三位为后两位的平方(位数不够用0补,满十进一)例:323*7233*7*10+23=233232=529-第十六讲 乘法速算8六:多位数特殊算法6.1 一数和为9,一数为顺子的算法方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数,中间的数字全部替换为上一步处理完的数。例:45*步骤1:4+1=5,10-5=5,459=5(任选一个即可)步骤2:5*2=10;5*(10-7)=15步骤3:将中间的3456替换为全部替换为5-6.2、一数和为9,一数为含890的顺的算法方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数。中间的数字除9
33、以外全部替换为上一步处理完的数,9替换成0,若0为结尾则先约掉0按6.1的方法算出答案后再补0。例:36*步骤1:3+1=4,10-6=4,369=4(任选一个即可)步骤2:4*6=24;4*(10-2)=32步骤3:将78901替换为44044-6.3、一数和为9,一数为缺八顺的算法(末尾可以是789)方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数。中间的数字全部替换为上一步处理完的数。若0为结尾则先约掉0按6.1的方法算出答案后再补0。例:36*步骤1:3+1=4,10-6=4,369=4(任选一个即可)步骤2:4*5=20;4*(10-4)=24步骤3:将全部替换为
34、4-6.4、一数互补,一数为相同数的算法方法:头加一和尾同时与相同数的任意一位数字相乘。 中间的数字位数为相同数的位数减2,数字不变例:46*步骤1:(4+1)*4=20,6*4=24步骤2:有9个4,9-2=7,抄7个4-6.5、一数为相同数,一数位两位循环(相邻两位互补)的算法方法:先将相同数的任意一位乘以循环节首位+1,再将相同数的任意一位乘以尾数,中间数字替换成相同数的任意一位数例1:77*步骤1:(6+1)*7=49,7*4=28步骤2:将4646替换为7777-例2:44*步骤1:(7+1)*4=32,7*4=28步骤2:将37373替换为44444-6.6、多个9乘以任意数(位数
35、要少于或等于前数的总位数)方法:先将(任意数)1,然后把(任意数)的位数和(多个9)比较位数的多少,少几位则在中间写几个9,写完9后写补数。熟练者可以直接看出位数,写补数。如果两个数位数相同,中间则没有9。例:1536*第一步:1536-1=1535第二步:6(6个9)-4(1536是4位数)=2第三步:10000-1536=8464答案:、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000中减去某一数后所剩下的数。例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运
36、算转为简单的加法运算等等。、除法速算一、某数除以5、25、125时1、 被除数 5= 被除数 (10 2)= 被除数 10 2= 被除数 2 102、 被除数 25= 被除数 4 100= 被除数 2 2 1003、 被除数 125= 被除数 8 1000= 被除数 2 2 2 1000注:速算技巧、乘法速算一、十位数是1的两位数相乘乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。例:151715+7=2257=35-255即1517=255解释:1517=15(10+7)=1510+157=150+(10+5)7=150+70+57=(150+70)+
37、(57)为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。例:171917+9=2679=63连在一起就是255,即260+63=323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。例:51315030=150050+30=80-1580因为11=1,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。例:81918090=720080+90=170-7370-7371原理大家自己理解就可以了。三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。例:4346(43+6)40=196036=18-1978例:8987(89+7)80=768097=63-7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。例:5654(5+1)5=30-64=24-3024例:7377(7+1)7=56-37=21-5621例:2129(2+1)2=6-19=9-
限制150内