平行四边形存在性问题(共5页).docx
《平行四边形存在性问题(共5页).docx》由会员分享,可在线阅读,更多相关《平行四边形存在性问题(共5页).docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平行四边形存在性问题一、解平行四边形的存在性问题一般分三个步骤第一步寻找分类标准,第二步画图,第三步计算.二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快.三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。(辅助手段三角形全等,等积法,中点坐标公式)例1.已知抛物线与轴
2、的一个交点为A(-1,0),与y轴的正半轴交于点C直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;当点C在以AB为直径的P上时,求抛物线的解析式;坐标平面内是否存在点,使得以点M和中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由例2、如图,抛物线:y=x2x与x轴交于A、B(A在B左侧),A(1,0)、B(3,0),顶点为C(1,2)(1)求过A、B、C三点的圆的半径(2)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标例3已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点
3、左侧。点B的坐标为(1,0),OC=30B(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由例4.已知抛物线:(1)求抛物线的顶点坐标.(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.(3)如下图,抛物线的顶点为P,轴上有一动点M,在、这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由.例5如图,抛
4、物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由练习1、已知抛物线 经过A(-3,0),B(1,0),C(0,3)三点. (1)求抛物线的解析式; (2)P为抛物线的顶点,M为坐标平面内的点,若以A,C,P,M为顶点的四边形为平行四边形,求点M的坐标.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 存在 问题
限制150内