备考2022练习2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版).doc
《备考2022练习2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版).doc》由会员分享,可在线阅读,更多相关《备考2022练习2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2010年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1(5分)复数=()AiBiC1213iD12+13i2(5分)记cos(80)=k,那么tan100=()ABCD3(5分)若变量x,y满足约束条件,则z=x2y的最大值为()A4B3C2D14(5分)已知各项均为正数的等比数列an,a1a2a3=5,a7a8a9=10,则a4a5a6=()AB7C6D5(5分)(1+2)3(1)5的展开式中x的系数是()A4B2C2D46(5分)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()A30
2、种B35种C42种D48种7(5分)正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为()ABCD8(5分)设a=log32,b=ln2,c=,则()AabcBbcaCcabDcba9(5分)已知F1、F2为双曲线C:x2y2=1的左、右焦点,点P在C上,F1PF2=60,则P到x轴的距离为()ABCD10(5分)已知函数f(x)=|lgx|,若0ab,且f(a)=f(b),则a+2b的取值范围是()ABC(3,+)D3,+)11(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()ABCD12(5分)已知在半径为2的球面上有A、B、C、
3、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()ABCD二、填空题(共4小题,每小题5分,满分20分)13(5分)不等式的解集是 14(5分)已知为第三象限的角,则= 15(5分)直线y=1与曲线y=x2|x|+a有四个交点,则a的取值范围是 16(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为 三、解答题(共6小题,满分70分)17(10分)已知ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C18(12分)投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专
4、家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3各专家独立评审()求投到该杂志的1篇稿件被录用的概率;()求投到该杂志的4篇稿件中,至少有2篇被录用的概率19(12分)如图,四棱锥SABCD中,SD底面ABCD,ABDC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC()证明:SE=2EB;()求二面角ADEC的大小20(12分)已知函数f(x)=(x+1)lnxx+1()若xf(x)x2+ax+1,
5、求a的取值范围;()证明:(x1)f(x)021(12分)已知抛物线C:y2=4x的焦点为F,过点K(1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D()证明:点F在直线BD上;()设,求BDK的内切圆M的方程22(12分)已知数列an中,a1=1,an+1=c()设c=,bn=,求数列bn的通项公式;()求使不等式anan+13成立的c的取值范围2010年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)复数=()AiBiC1213iD12+13i【考点】A5:复数的运算菁优网版权所有【专题】11:计算题【分析】复
6、数的分子中利用i2=1代入3,然后化简即可【解答】解:故选:A【点评】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧2(5分)记cos(80)=k,那么tan100=()ABCD【考点】GF:三角函数的恒等变换及化简求值;GG:同角三角函数间的基本关系;GO:运用诱导公式化简求值菁优网版权所有【专题】11:计算题【分析】法一:先求sin80,然后化切为弦,求解即可法二:先利用诱导公式化切为弦,求出求出结果【解答】解:法一,所以tan100=tan80=:法二cos(80)=kcos(80)=k,=【点评】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一
7、转化思想的应用3(5分)若变量x,y满足约束条件,则z=x2y的最大值为()A4B3C2D1【考点】7C:简单线性规划菁优网版权所有【专题】11:计算题;31:数形结合【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可【解答】解:画出可行域(如图),z=x2yy=xz,由图可知,当直线l经过点A(1,1)时,z最大,且最大值为zmax=12(1)=3故选:B【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题4(5分)已知各项均为正数的等比数列an,a1a2a3=5,a
8、7a8a9=10,则a4a5a6=()AB7C6D【考点】87:等比数列的性质菁优网版权所有【分析】由数列an是等比数列,则有a1a2a3=5a23=5;a7a8a9=10a83=10【解答】解:a1a2a3=5a23=5;a7a8a9=10a83=10,a52=a2a8,故选:A【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想5(5分)(1+2)3(1)5的展开式中x的系数是()A4B2C2D4【考点】DA:二项式定理菁优网版权所有【专题】11:计算题【分析】利用完全平方公式展开,利用二项展开式的通项公式求出x的系数【解答】解:(1
9、+2)3(1)5=(1+6+12x+8x)(1)5故(1+2)3(1)5的展开式中含x的项为1C53()3+12x=10x+12xC50=2x,所以x的系数为2故选:C【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力6(5分)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()A30种B35种C42种D48种【考点】D1:分类加法计数原理菁优网版权所有【专题】11:计算题【分析】两类课程中各至少选一门,包含两种情况:A类
10、选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果【解答】解:可分以下2种情况:A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;A类选修课选2门,B类选修课选1门,有C32C41种不同的选法根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种故选:A【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73C33C43=307(5分)正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为()ABCD
11、【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算菁优网版权所有【专题】5G:空间角【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即O1OD1,直角三角形OO1D1中,cosO1OD1=,故选:D【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面ACD1的距离是解决本题的关键所在,这也是
12、转化思想的具体体现,属于中档题8(5分)设a=log32,b=ln2,c=,则()AabcBbcaCcabDcba【考点】4M:对数值大小的比较菁优网版权所有【专题】11:计算题;35:转化思想【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系【解答】解:a=log32=,b=ln2=,而log23log2e1,所以ab,c=,而,所以ca,综上cab,故选:C【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用9(5分)已知F1、F2为双曲线C:x2y2=1的左、右焦点,点
13、P在C上,F1PF2=60,则P到x轴的距离为()ABCD【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质菁优网版权所有【专题】11:计算题【分析】设点P(x0,y0)在双曲线的右支,由双曲线的第二定义得,由余弦定理得cosF1PF2=,由此可求出P到x轴的距离【解答】解:不妨设点P(x0,y0)在双曲线的右支,由双曲线的第二定义得,由余弦定理得cosF1PF2=,即cos60=,解得,所以,故P到x轴的距离为故选:B【点评】本题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力10(5分)已知函数f(x)=|lg
14、x|,若0ab,且f(a)=f(b),则a+2b的取值范围是()ABC(3,+)D3,+)【考点】34:函数的值域;3D:函数的单调性及单调区间;4H:对数的运算性质;7F:基本不等式及其应用菁优网版权所有【专题】11:计算题;16:压轴题;35:转化思想【分析】由题意f(a)=f(b),求出ab的关系,然后利用“对勾”函数的性质知函数f(a)在a(0,1)上为减函数,确定a+2b的取值范围【解答】解:因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0ab,所以0a1b,令,由“对勾”函数的性质知函数f(a)在a(0,1)上为减函数,所以f(a)f(
15、1)=1+=3,即a+2b的取值范围是(3,+)故选:C【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+2b=,从而错选A,这也是命题者的用心良苦之处11(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()ABCD【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用菁优网版权所有【专题】5C:向量与圆锥曲线【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关
16、于x的函数,然后根据求函数最值的办法,进行解答【解答】解:如图所示:设OP=x(x0),则PA=PB=,APO=,则APB=2,sin=,=(12sin2)=(x21)(1)=x2+323,当且仅当x2=时取“=”,故的最小值为23故选:D【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力12(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()ABCD【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质菁优网版权所有【专题】11:计算题;15:综合题;16
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备考 2022 练习 2010 全国 统一 高考 数学试卷 理科 大纲 解析
限制150内