备考2022练习2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版) (2).doc
《备考2022练习2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版) (2).doc》由会员分享,可在线阅读,更多相关《备考2022练习2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版) (2).doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2016年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1(5分)已知集合A=1,2,3,B=x|x29,则AB=()A2,1,0,1,2,3B2,1,0,1,2C1,2,3D1,22(5分)设复数z满足z+i=3i,则=()A1+2iB12iC3+2iD32i3(5分)函数y=Asin(x+)的部分图象如图所示,则()Ay=2sin(2x)By=2sin(2x)Cy=2sin(x+)Dy=2sin(x+)4(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A12BC8D45(5分)设F为抛物线
2、C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()AB1CD26(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD27(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D328(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()ABCD9(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B1
3、2C17D3410(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()Ay=xBy=lgxCy=2xDy=11(5分)函数f(x)=cos2x+6cos(x)的最大值为()A4B5C6D712(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),(xm,ym),则xi=()A0BmC2mD4m二、填空题:本题共4小题,每小题5分.13(5分)已知向量=(m,4),=(3,2),且,则m= 14(5分)若x,y满足约束条件,则z=x2y的最小值为 15(5分)ABC的内角A,
4、B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= 16(5分)有三张卡片,分别写有1和2,1和3,2和3甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 三、解答题:解答应写出文字说明、证明过程或演算步骤.17(12分)等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=218(12分)某险种的基本保费为a(单位:
5、元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(I)记A为事件:“一续保人本年度的保费不高于基本保费”求P(A)的估计值;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”求P(B)的估计值;()求续保人本年度的平均保费估计值19(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点
6、H,将DEF沿EF折到DEF的位置()证明:ACHD;()若AB=5,AC=6,AE=,OD=2,求五棱锥DABCFE体积20(12分)已知函数f(x)=(x+1)lnxa(x1)(I)当a=4时,求曲线y=f(x)在(1,f(1)处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围21(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA(I)当|AM|=|AN|时,求AMN的面积(II)当2|AM|=|AN|时,证明:k2请考生在第2224题中任选一题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22(10分)
7、如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积选项4-4:坐标系与参数方程23在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率选修4-5:不等式选讲24已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集()求M;()证明:当a,bM时,|a+b|1+ab|2016年全国统一高
8、考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1(5分)已知集合A=1,2,3,B=x|x29,则AB=()A2,1,0,1,2,3B2,1,0,1,2C1,2,3D1,2【考点】1E:交集及其运算菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;5J:集合【分析】先求出集合A和B,由此利用交集的定义能求出AB的值【解答】解:集合A=1,2,3,B=x|x29=x|3x3,AB=1,2故选:D【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用2(5分)设复数z满
9、足z+i=3i,则=()A1+2iB12iC3+2iD32i【考点】A5:复数的运算菁优网版权所有【专题】11:计算题;4O:定义法;5N:数系的扩充和复数【分析】根据已知求出复数z,结合共轭复数的定义,可得答案【解答】解:复数z满足z+i=3i,z=32i,=3+2i,故选:C【点评】本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题3(5分)函数y=Asin(x+)的部分图象如图所示,则()Ay=2sin(2x)By=2sin(2x)Cy=2sin(x+)Dy=2sin(x+)【考点】HK:由y=Asin(x+)的部分图象确定其解析式菁优网版权所有【专题】35:
10、转化思想;4R:转化法;57:三角函数的图像与性质【分析】根据已知中的函数y=Asin(x+)的部分图象,求出满足条件的A,值,可得答案【解答】解:由图可得:函数的最大值为2,最小值为2,故A=2,=,故T=,=2,故y=2sin(2x+),将(,2)代入可得:2sin(+)=2,则=满足要求,故y=2sin(2x),故选:A【点评】本题考查的知识点是由y=Asin(x+)的部分图象确定其解析式,确定各个参数的值是解答的关键4(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A12BC8D4【考点】LG:球的体积和表面积菁优网版权所有【专题】11:计算题;34:方程思想;49
11、:综合法;5U:球【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12故选:A【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题5(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()AB1CD2【考点】K8:抛物线的性质菁优网版权所有【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值【解答】解:抛
12、物线C:y2=4x的焦点F为(1,0),曲线y=(k0)与C交于点P在第一象限,由PFx轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档6(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD2【考点】IT:点到直线的距离公式;J9:直线与圆的位置关系菁优网版权所有【专题】35:转化思想;4R:转化法;5B:直线与圆【分析】求出圆心坐标,代入点到直线距离方程,解得答案【解答】解:圆x2+y22x8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y1=0的距离d
13、=1,解得:a=,故选:A【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档7(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D32【考点】L!:由三视图求面积、体积菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面【解答】解:由三视图知,空间几何体是一个组合体,上面是一
14、个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长是=4,圆锥的侧面积是24=8,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,圆柱表现出来的表面积是22+224=20空间组合体的表面积是28,故选:C【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端8(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()ABCD【考点】CF:几何概型菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计
15、【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率【解答】解:红灯持续时间为40秒,至少需要等待15秒才出现绿灯,一名行人前25秒来到该路口遇到红灯,至少需要等待15秒才出现绿灯的概率为=故选:B【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础9(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B12C17D34【考点】EF:程序框图菁优网版权所有【专题】11:计算题;28:操作型;5K:算法和程序框图【分析】根据已知的程序框图
16、可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【解答】解:输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答10(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()Ay=xBy=lgxCy=2xDy=【考点】4K:对数函数的定义域;4L:对数函数的值域与最值菁优网版权
17、所有【专题】11:计算题;4O:定义法;51:函数的性质及应用【分析】分别求出各个函数的定义域和值域,比较后可得答案【解答】解:函数y=10lgx的定义域和值域均为(0,+),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+),不满足要求;函数y=的定义域和值域均为(0,+),满足要求;故选:D【点评】本题考查的知识点是函数的定义域和值域,熟练掌握各种基本初等函数的定义域和值域,是解答的关键11(5分)函数f(x)=cos2x+6cos(x)的最大值为()A4B5C6D7【考点】HW:三角函数的最值菁
18、优网版权所有【专题】33:函数思想;4J:换元法;56:三角函数的求值;57:三角函数的图像与性质【分析】运用二倍角的余弦公式和诱导公式,可得y=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值【解答】解:函数f(x)=cos2x+6cos(x)=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1=2(t)2+,由1,1,可得函数在1,1递增,即有t=1即x=2k+,kZ时,函数取得最大值5故选:B【点评】本题考查三角函数的最值的求法,注意运用二倍角公式和诱导
19、公式,同时考查可化为二次函数的最值的求法,属于中档题12(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),(xm,ym),则xi=()A0BmC2mD4m【考点】&2:带绝对值的函数;&T:函数迭代;3V:二次函数的性质与图象菁优网版权所有【专题】35:转化思想;4R:转化法;51:函数的性质及应用【分析】根据已知中函数函数f(x)(xR)满足f(x)=f(2x),分析函数的对称性,可得函数y=|x22x3|与 y=f(x) 图象的交点关于直线x=1对称,进而得到答案【解答】解:函数f(x)(xR)满
20、足f(x)=f(2x),故函数f(x)的图象关于直线x=1对称,函数y=|x22x3|的图象也关于直线x=1对称,故函数y=|x22x3|与 y=f(x) 图象的交点也关于直线x=1对称,故xi=2=m,故选:B【点评】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档二、填空题:本题共4小题,每小题5分.13(5分)已知向量=(m,4),=(3,2),且,则m=6【考点】9K:平面向量共线(平行)的坐标表示菁优网版权所有【专题】11:计算题;29:规律型;5A:平面向量及应用【分析】直接利用向量共线的充要条件列出方程求解即可【解答】解:向量=(m,4),=(3,2),且,可得1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备考2022练习2016年全国统一高考数学试卷(文科)(新课标)(含解析版)(2)
限制150内