Matlab课件第7章MATLAB解方程与函数极值.ppt
《Matlab课件第7章MATLAB解方程与函数极值.ppt》由会员分享,可在线阅读,更多相关《Matlab课件第7章MATLAB解方程与函数极值.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第7章章 MATLAB解方程与函数极值解方程与函数极值7.1 线性方程组求解线性方程组求解7.2 非线性方程数值求解非线性方程数值求解7.3 常微分方程初值问题的数值解法常微分方程初值问题的数值解法7.4 函数极值函数极值7.1 线性方程组求解线性方程组求解7.1.1 直接解法直接解法1利用左除运算符的直接解法利用左除运算符的直接解法对于线性方程组对于线性方程组Ax=b,可以利用左除运算符,可以利用左除运算符“”求解:求解:x=Ab例例7-1 用直接解法求解下列线性方程组。用直接解法求解下列线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1
2、,-4;b=13,-9,6,0;x=Ab2利用矩阵的分解求解线性方程组利用矩阵的分解求解线性方程组矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有若干个矩阵的乘积。常见的矩阵分解有LU分解、分解、QR分解、分解、Cholesky分解,以及分解,以及Schur分解、分解、Hessenberg分解、奇异分解、奇异分解等。分解等。(1)LU分解分解矩阵的矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要一个上三角矩
3、阵的乘积形式。线性代数中已经证明,只要方阵方阵A是非奇异的,是非奇异的,LU分解总是可以进行的。分解总是可以进行的。MATLAB提供的提供的lu函数用于对矩阵进行函数用于对矩阵进行LU分解,其调用格分解,其调用格式为:式为:L,U=lu(X):产生一个上三角阵:产生一个上三角阵U和一个变换形式的下三角和一个变换形式的下三角阵阵L(行交换行交换),使之满足,使之满足X=LU。注意,这里的矩阵。注意,这里的矩阵X必须必须是方阵。是方阵。L,U,P=lu(X):产生一个上三角阵:产生一个上三角阵U和一个下三角阵和一个下三角阵L以及以及一个置换矩阵一个置换矩阵P,使之满足,使之满足PX=LU。当然矩阵
4、。当然矩阵X同样必须同样必须是方阵。是方阵。实现实现LU分解后,线性方程组分解后,线性方程组Ax=b的解的解x=U(Lb)或或x=U(LPb),这样可以大大提高运算速度。,这样可以大大提高运算速度。例例7-2 用用LU分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用或采用LU分解的第分解的第2种格式,命令如下:种格式,命令如下:L,U,P=lu(A);x=U(LP*b)(2)QR分解分解对矩阵对矩阵X进行进行QR分解,就是把
5、分解,就是把X分解为一个正交矩阵分解为一个正交矩阵Q和一和一个上三角矩阵个上三角矩阵R的乘积形式。的乘积形式。QR分解只能对方阵进行。分解只能对方阵进行。MATLAB的函数的函数qr可用于对矩阵进行可用于对矩阵进行QR分解,其调用格分解,其调用格式为:式为:Q,R=qr(X):产生一个一个正交矩阵:产生一个一个正交矩阵Q和一个上三角矩阵和一个上三角矩阵R,使之满足,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵:产生一个一个正交矩阵Q、一个上三角矩阵、一个上三角矩阵R以及一个置换矩阵以及一个置换矩阵E,使之满足,使之满足XE=QR。实现实现QR分解后,线性方程组分解后,线性方程
6、组Ax=b的解的解x=R(Qb)或或x=E(R(Qb)。例例7-3 用用QR分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用或采用QR分解的第分解的第2种格式,命令如下:种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb)(3)Cholesky分解分解如果矩阵如果矩阵X是对称正定的,则是对称正定的,则Cholesky分解将矩阵分解将矩阵X分解成一分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为个下三角矩阵和上
7、三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即则下三角矩阵为其转置,即X=RR。MATLAB函数函数chol(X)用于对矩阵用于对矩阵X进行进行Cholesky分解,其调用格式为:分解,其调用格式为:R=chol(X):产生一个上三角阵:产生一个上三角阵R,使,使RR=X。若。若X为非对称为非对称正定,则输出一个出错信息。正定,则输出一个出错信息。R,p=chol(X):这个命令格式将不输出出错信息。当:这个命令格式将不输出出错信息。当X为对为对称正定的,则称正定的,则p=0,R与上述格式得到的结果相同;否则与上述格式得到的结果相同;否则p为一个正整数。如果为一个正整数。如果X为满
8、秩矩阵,则为满秩矩阵,则R为一个阶数为为一个阶数为q=p-1的上三角阵,且满足的上三角阵,且满足RR=X(1:q,1:q)。实现实现Cholesky分解后,线性方程组分解后,线性方程组Ax=b变成变成RRx=b,所以,所以x=R(Rb)。例例7-4 用用Cholesky分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;R=chol(A)?Error using=cholMatrix must be positive definite命令执行时,出现错误信息,说明命令
9、执行时,出现错误信息,说明A为非正定矩阵。为非正定矩阵。7.1.2 迭代解法迭代解法迭代解法非常适合求解大型系数矩阵的方程组。在数值分析迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括中,迭代解法主要包括 Jacobi迭代法、迭代法、Gauss-Serdel迭代迭代法、超松弛迭代法和两步迭代法。法、超松弛迭代法和两步迭代法。1Jacobi迭代法迭代法对于线性方程组对于线性方程组Ax=b,如果,如果A为非奇异方阵,即为非奇异方阵,即aii0(i=1,2,n),则可将,则可将A分解为分解为A=D-L-U,其中,其中D为对为对角阵,其元素为角阵,其元素为A的对角元素,的对角元
10、素,L与与U为为A的下三角阵和上的下三角阵和上三角阵,于是三角阵,于是Ax=b化为:化为:x=D-1(L+U)x+D-1b与之对应的迭代公式为:与之对应的迭代公式为:x(k+1)=D-1(L+U)x(k)+D-1b这就是这就是Jacobi迭代公式。如果序列迭代公式。如果序列x(k+1)收敛于收敛于x,则,则x必必是方程是方程Ax=b的解。的解。Jacobi迭代法的迭代法的MATLAB函数文件函数文件Jacobi.m如下:如下:function y,n=jacobi(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y;y=B*x0+f
11、;n=n+1;end例例7-5 用用Jacobi迭代法求解下列线性方程组。设迭代初值为迭代法求解下列线性方程组。设迭代初值为0,迭代精度为,迭代精度为10-6。在命令中调用函数文件在命令中调用函数文件Jacobi.m,命令如下:,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=jacobi(A,b,0,0,0,1.0e-6)2Gauss-Serdel迭代法迭代法在在Jacobi迭代过程中,计算时,已经得到,不必再用,即原迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为可以改进为Dx(k+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Matlab 课件 方程 函数 极值
限制150内