数字图像灰度阈值的图像分割技术matlab(共13页).doc
《数字图像灰度阈值的图像分割技术matlab(共13页).doc》由会员分享,可在线阅读,更多相关《数字图像灰度阈值的图像分割技术matlab(共13页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1 课程设计的目的(1) 使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响(2) 使用Matlab软件进行图像的分割(3) 能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割性能(4) 能够掌握分割条件(阈值等)的选择(5) 完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合理的解释2 课程设计的要求(1) 能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作(2) 包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3) 封闭轮廓边界(4) 区域分割算法:阈值分割,区域生长等3
2、 前言3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景
3、),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于的图像分割技术。若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。在物体与背景有较强的对比
4、度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的设图像为f(x,y),其灰度集范围是0,L,在0和L之间选择一个合适的灰度阈值T,则图像分割方法可由式(2.1)描述 (2.1)这样得到的g(x,y)是一幅二值图像。3.2图像阈值分割技术研究现状和实际应用 阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛
5、的分割技术。已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。在工业生产中,机器视觉运用于产品质量检测等等。在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性将直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。3.3图像阈值分割技术研究背景意义阈值分割的优点是计算简单,运算效率较高,速度快。全局阈值对于灰度相差很大的不同目标和背景能进行有效的分割
6、。当图像的灰度差异不明显或不同目标的灰度值范围有重叠时,应采用局部阈值或动态阈值分割法。另一方面,这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。在实际应用中,阈值法通常与其他方法结合使用。法也叫变化阈值法,或自适应阈值法。这类算法的时间复杂性和空间复杂性比较大,但是抗噪能力强,对一些用全局阈值不易分割的图像有较好的效果。4 图像阈值分割理论知识叙述及设计方案4.1阈值分割的基本概念图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像1。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行
7、图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像像素点分为若干类常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征设原始图像为f(x,y),按照一定的准则在f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为若取 :b0=0(黑),b1=1(白),
8、即为我们通常所说的图像二值化。一般意义下,阈值运算可以看作是对图像中某点的灰度、该点的某种局部特性以及该点在图像中的位置的一种函数,这种阈值函数可记作 T(x,y,N(x,y),f(x,y)式中,f(x,y)是点(x,y)的灰度值;N(x,y)是点(x,y)的局部邻域特性根据对T的不同约束,可以得到3种不同类型的阈值,即 (1)点相关的全局阈值TT(f(x,y) (只与点的灰度值有关)(2)区域相关的全局阈值TT(N(x,y),f(x,y) (与点的灰度值和该点的局部邻域特征有关) (3)局部阈值或动态阈值TT(x,y,N(x,y),f(x,y)(与点的位置、该点的灰度值和该点邻域特征有关)所
9、有这些阈值化方法,根据使用的是图像的局部信息还是整体信息,可以分为上下文无关(non-contextual)方法(也叫做基于点(point-dependent)的方法)和上下文相关(contextual)方法(也叫做基于区域(region-dependent)的方法);根据对全图使用统一阈值还是对不同区域使用不同阈值,可以分为全局阈值方法(global thresholding)和局部阈值方法(local thresholding,也叫做自适应阈值方法adaptive thresholding);另外,还可以分为双阈值方法(bilever thresholding)和多阈值方法(multith
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 灰度 阈值 图像 分割 技术 matlab 13
限制150内