数据仓库与数据挖掘实验三(数据挖掘)(共9页).doc
《数据仓库与数据挖掘实验三(数据挖掘)(共9页).doc》由会员分享,可在线阅读,更多相关《数据仓库与数据挖掘实验三(数据挖掘)(共9页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、实验内容和目的目的:1理解数据挖掘的基本概念及其过程;2理解数据挖掘与数据仓库、OLAP之间的关系3理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。内容:将创建一个数据挖掘模型以训练销售数据,并使用“Microsoft 决策树”算法在客户群中找出会员卡选择模式。请将要挖掘的维度(事例维度)设置为客户,再将 Member_Card 成员的属性设置为数据挖掘算法识别模式时要使用的信息。然后选择人口统计特征列表,算法将从中确定模式:婚姻状况、年收入、在家子女数和教育程度。下一步需要训练模型,以便能够浏览树视图并从中读取模式。市场部将根据这些模式
2、设计新的会员卡,使其适应申请各类会员卡的客户类型。二、所用仪器、材料(设备名称、型号、规格等)操作系统平台:Windows 7数据库平台:SQL Server 2008 SP2三、实验原理知识发现被认为是从数据中发现有用知识的整个过程。数据挖掘被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式。KDD过程定义为:KDD是从数据集中识别出有效出、新颖的、潜在有用的,以及最终可理解的模式的高级处理过程。KDD过程可以概括为3部分:数据准备(data preparation),数据挖掘及结果的解释和评估(interpretation & evaluation)。数据挖掘的对象主要是关系
3、数据库和数据仓库,这是典型的结构化数据。随着技术的发展,数据挖掘对象逐步扩大到半结构化或非结构化数据,这主要是文本数据、图像与视频数据以及Web数据等。数据挖掘任务有6项:关联分析、时序模式、聚类、分类、偏差检测、预测。数据挖掘方法是由人工智能、机器学习的方法发展而来,结合传统的统计分析方法、模糊数学方法以及科学计算可视化技术,以数据库为研究对象,形成了数据挖掘方法和技术。数据挖掘方法和技术可以分为6大类:1 归纳学习的信息论方法:ID3等方法(决策树方法)、IBLE方法(决策规则树方法)2 归纳学习的集合论方法:粗糙集(rough set)方法、关联规则挖掘、覆盖正例排斥反例方法、概念树方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据仓库 数据 挖掘 实验
限制150内