《冶金传输原理》PPT课件.ppt





《《冶金传输原理》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《冶金传输原理》PPT课件.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 流体动力学流体动力学流场流场充满运动流体的空间充满运动流体的空间 动力学动力学研究流体质点在流场中所占有的空间的一切点上,研究流体质点在流场中所占有的空间的一切点上,运动参数(运动参数(速度、加速度、压强、粘性力速度、加速度、压强、粘性力)随时间和空间位置的分)随时间和空间位置的分布和连续变化规律。布和连续变化规律。3.1.1 3.1.1 研究流体运动的方法研究流体运动的方法 欧拉法欧拉法以以速度速度作为描述流体在空间变化的变量,即主要研作为描述流体在空间变化的变量,即主要研究流体速度在空间的分布究流体速度在空间的分布3.1 3.1 流体运动的基本概念流体运动的基本概念3.1 3.1 流体运
2、动的基本概念流体运动的基本概念速度可表示为空间(速度可表示为空间(x,y,z)x,y,z)及时间(及时间(t)t)的函数,即的函数,即加速度(以加速度(以x x方向为例):对函数方向为例):对函数u ux x求全微分,有求全微分,有将上式两端除以将上式两端除以dt,dt,得得3.1 3.1 流体运动的基本概念流体运动的基本概念 迁移加速度迁移加速度类似可得类似可得y y和和z z方向的加速度,最终得到的流体的加速度为方向的加速度,最终得到的流体的加速度为当地加速度当地加速度式中式中3.1 3.1 流体运动的基本概念流体运动的基本概念3.1.2 3.1.2 稳定流与非稳定流稳定流与非稳定流 非稳
3、定流非稳定流-运动参数随位置、时间变化,即运动参数随位置、时间变化,即 稳定流稳定流-运动参数只随位置变化,即运动参数只随位置变化,即 稳定流的数学条件稳定流的数学条件3.1 3.1 流体运动的基本概念流体运动的基本概念非稳定流非稳定流稳定流稳定流3.1.3 3.1.3 流场的描述流场的描述 1 1、迹线:同一质点一段时间内运动的轨迹线。每一质点迹线:同一质点一段时间内运动的轨迹线。每一质点有一迹线,与时间无关。有一迹线,与时间无关。2 2、流线:同一时刻,不同质点的流动方向线。如下图示。流线:同一时刻,不同质点的流动方向线。如下图示。3.1 3.1 流体运动的基本概念流体运动的基本概念流线概
4、念流线概念流线含义:流线含义:1.1.流场中某时间的一条空间曲线;流场中某时间的一条空间曲线;2.2.在该线上各流体质点的速度方向与该曲线的切线方向相重合。在该线上各流体质点的速度方向与该曲线的切线方向相重合。流线特征:流线特征:1.1.非稳定流时,随时间改变;非稳定流时,随时间改变;2.2.稳定流时,不随时间改变(此时流线上质点的迹线与流线重合)稳定流时,不随时间改变(此时流线上质点的迹线与流线重合)3.3.流线不能相交,也不能转折;流线不能相交,也不能转折;4.4.流线疏密的含义流线疏密的含义反映流速大小。反映流速大小。3.1 3.1 流体运动的基本概念流体运动的基本概念不同边界的流线图不
5、同边界的流线图流线微分方程(推导略):流线微分方程(推导略):3.1.4 3.1.4 流管、流束、流量流管、流束、流量 流管流管取流场内一封闭线取流场内一封闭线l l,在曲线上各点作流线,构成的管在曲线上各点作流线,构成的管状表面。状表面。流束流束在流管内取一微小曲面的在流管内取一微小曲面的dA,dA,通过曲面通过曲面dAdA上各点作流线,这一实心上各点作流线,这一实心流线束叫流束。流线束叫流束。总流总流无数流束所组成的总流束。无数流束所组成的总流束。有效断面有效断面流束内与流线正交的面。流束内与流线正交的面。3.1 3.1 流体运动的基本概念流体运动的基本概念 流量流量单位时间流过有效断面的
6、流体的量单位时间流过有效断面的流体的量3.1.5 3.1.5 流量与平均速度流量与平均速度dQ=udAdQ=udA总的体积流量总的体积流量引入平均速度引入平均速度v v,则有,则有3.1 3.1 流体运动的基本概念流体运动的基本概念z zx xy y0 0dxdxdzdzdydy3.2 3.2 连续性方程连续性方程 动力学动力学研究流体质点在流场中所占有的空间的一切点上,研究流体质点在流场中所占有的空间的一切点上,运动参数(运动参数(速度、加速度、压强、粘性力速度、加速度、压强、粘性力)随时间和空间位置的分)随时间和空间位置的分布和连续变化规律。布和连续变化规律。推导方法推导方法微元平衡法微元
7、平衡法 即在流场中取一微体积元,建立该微体积元的质量守恒。即在流场中取一微体积元,建立该微体积元的质量守恒。3.2.1直角坐标直角坐标系的连续性方程系的连续性方程单位时间输入微元体的质量单位时间输入微元体的质量-输出的质量输出的质量累积的质量累积的质量单位时间内,单位时间内,x x方向输入输出的流体质量为:方向输入输出的流体质量为:时间时间dtdt内,内,x x方向输入输出之差:方向输入输出之差:3.2 3.2 连续性方程连续性方程z zx xy y0 0微元的六面空间体微元的六面空间体dzdzdydydxdx输入面(左侧面):输入面(左侧面):输出面(右侧面):输出面(右侧面):同理,同理,
8、y方向,有:方向,有:Z方向,有:方向,有:dt时间内时间内x、y、z三方向输入输出差的总和为:三方向输入输出差的总和为:3.2 3.2 连续性方程连续性方程质量累积质量累积密度增量密度增量3.2 3.2 连续性方程连续性方程t t时刻:时刻:t+dtt+dt时刻:时刻:3.2 3.2 连续性方程连续性方程对单位时间、单位空间,有:对单位时间、单位空间,有:物理意义物理意义流体在单位时间内流经单位体积空间输出与输入流体在单位时间内流经单位体积空间输出与输入的质量差与其内部质量变化的代数和为零的质量差与其内部质量变化的代数和为零dtdt时间输入微元体的质量时间输入微元体的质量-输出的质量输出的质
9、量累积的质量累积的质量根据质量守恒定律:根据质量守恒定律:=将(将(3.253.25)式展开,有:)式展开,有:因为流体密度因为流体密度=f(x,y,z,t)=f(x,y,z,t)所以有全微分所以有全微分3.2 3.2 连续性方程连续性方程将式(将式(b)b)代入式(代入式(a),a),方程两边同除以方程两边同除以,得:,得:引入哈密顿算子:引入哈密顿算子:所以:所以:则式(则式(c)c)可改写为:可改写为:对不可压缩流体,对不可压缩流体,=常数,常数,式(式(3.263.26)可改写为:)可改写为:3.2 3.2 连续性方程连续性方程不可压缩流体的空间连续性方程不可压缩流体的空间连续性方程
10、式(式(3.283.28)物理意义:对不可压缩流体,单位时间单位空间内)物理意义:对不可压缩流体,单位时间单位空间内流体体积保持不变。流体体积保持不变。3.2 3.2 连续性方程连续性方程3.2.2 3.2.2 3.2.2 3.2.2 微元流束和总流的连续性方程微元流束和总流的连续性方程微元流束和总流的连续性方程微元流束和总流的连续性方程 一维流动一维流动流动在某些周界所限定的空间内沿某一方向流动流动在某些周界所限定的空间内沿某一方向流动,即流束平行即流束平行(如管道中流动)(如管道中流动),流动参数仅在一个流动参数仅在一个方向上有显著的变化,而在其它两个方向上无变方向上有显著的变化,而在其它
11、两个方向上无变化或变化很小,可忽略不计。化或变化很小,可忽略不计。变截面流管变截面流管只有两端面为流体的流入与流出面,流管侧面只有两端面为流体的流入与流出面,流管侧面 无流体流过无流体流过流体总流示意图流体总流示意图3.2 3.2 连续性方程连续性方程 对可压缩稳定流对可压缩稳定流,一流束两断面面积分别为一流束两断面面积分别为dAdA1 1、dAdA2 2,应用流束应用流束的连续性方程的连续性方程,有有:流体总流示意图流体总流示意图流入流入=流出流出 取平均密度取平均密度1m1m=1 1,2m2m=2 2,对(对(3 3.31.31)式两边积分)式两边积分 设设v v1 1,v v2 2是平均
12、速度,是平均速度,A A1 1,A A2 2为总为总流的有效断面面积流的有效断面面积,则上式可写为:则上式可写为:式(式(3 3.33.33)物理意义:对可压缩流体稳定流,沿流程的质量流)物理意义:对可压缩流体稳定流,沿流程的质量流量保持不变。量保持不变。对不可压缩流体:对不可压缩流体:=常数,常数,式式(3 3.33.33)变为:)变为:式(式(3 3.34.34)物理意义:对不可压缩流体沿流程体积流量不变,)物理意义:对不可压缩流体沿流程体积流量不变,流速与管截面积成反比。流速与管截面积成反比。例例3-13-1、例、例3-23-23.2 3.2 连续性方程连续性方程断面大流速小,断面大流速
13、小,断面小流速大断面小流速大方程推导依据:方程推导依据:F=maF=ma或动量守恒定律或动量守恒定律 推导方法:对微元控制体推导方法:对微元控制体dxdydzdxdydz运用运用F=maF=ma或动量守恒定律。或动量守恒定律。在流场中取一微元体在流场中取一微元体dxdydzdxdydz,顶点,顶点A A处的运动参数为:处的运动参数为:作用在微元体上的力有:作用在微元体上的力有:3.3 3.3 理想流体动量传输方程理想流体动量传输方程欧拉方程欧拉方程H HG GF FE EA AD DC CB B0 0y yx xz z理想流体微小平行六面体理想流体微小平行六面体x x方向:方向:(1 1)压力
14、)压力(2 2)体积力)体积力XdxdydzXdxdydz(3 3)流体加速度)流体加速度3.3 3.3 理想流体动量传输方程理想流体动量传输方程欧拉方程欧拉方程欧拉方程欧拉方程适用范围适用范围可压缩、不可压缩流体,稳定流、非稳定流。可压缩、不可压缩流体,稳定流、非稳定流。用矢量表示用矢量表示3.3 3.3 理想流体动量传输方程理想流体动量传输方程欧拉方程欧拉方程化简后得化简后得同理可得同理可得Y、Z方向的受力平衡式,综合可得:方向的受力平衡式,综合可得:代入式(代入式(3 3.38.38)得:)得:3.3 3.3 理想流体动量传输方程理想流体动量传输方程欧拉方程欧拉方程 方程(方程(3 3.
15、40.40)中:一般情况下)中:一般情况下X X、Y Y、Z Z是已知的,对不可压缩流是已知的,对不可压缩流体体=常数。常数。4 4个变量个变量u ux x,u uy y,u uz z,P P,三个动量方程,加上连续性方三个动量方程,加上连续性方程就可求解流体流动问题。程就可求解流体流动问题。3.4 3.4 实际流体动量传输方程实际流体动量传输方程纳维尔纳维尔-斯托克斯方程斯托克斯方程微元体受力分析:微元体受力分析:垂直于垂直于x x轴的切应力轴的切应力yxz0垂直于垂直于y y轴的切应力轴的切应力垂直于垂直于z z轴的切应力轴的切应力作用于微元体的压应力作用于微元体的压应力角标角标1-1-应
16、力作用面的外法线方向;应力作用面的外法线方向;角标角标2-2-应力的作用方向应力的作用方向微小平行六面体受力分析微小平行六面体受力分析0yxz微小平行六面体在微小平行六面体在x x方向受力分析方向受力分析3.4 3.4 实际流体动量传输方程实际流体动量传输方程纳维尔纳维尔-斯托克斯方程斯托克斯方程微元体微元体x x方向受力分析:方向受力分析:N-SN-S方程推导:方程推导:法法向向力力切切向向力力dxdydz体积力:同理想流体,体积力:同理想流体,x x方向分量方向分量XdxdydzXdxdydz惯性力:惯性力:ma(xma(x方向方向)将上述各力代入将上述各力代入x x方向的动量平衡方程方向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冶金传输原理 冶金 传输 原理 PPT 课件

限制150内