递推数列通项公式精选文档.ppt
《递推数列通项公式精选文档.ppt》由会员分享,可在线阅读,更多相关《递推数列通项公式精选文档.ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、递推数列通项公式本讲稿第一页,共三十五页1.an的前项和的前项和Sn=2n21,求通项,求通项an 公式法公式法(利用(利用an与与Sn的关系的关系 或利用等差、等比数列的通项公式)或利用等差、等比数列的通项公式)an=S1 (n=1)SnSn1(n2)解:当解:当n2时,时,an=SnSn1=(2n21)2(n1)21 =4n2不要遗漏不要遗漏n=1的情形哦!的情形哦!当当n=1时时,a1=1不满足上式不满足上式 因此因此 an=1 (n=1)4n 2(n2,)本讲稿第二页,共三十五页 已知数列的前n项和公式,求通项公式的基本方法是:注意:要先分n=1和 两种情况分别进行运算,然后验证能否统
2、一。例已知下列两数列 的前n项和sn的公式,求 的通项公式。(1)(2)本讲稿第三页,共三十五页例已知下列两数列 的前n项和sn的公式,求 的通项公式。(1)(2)解:(1),当 时 由于 也适合于此等式 (2),当 时 由于 不适合于此等式本讲稿第四页,共三十五页2.已知已知an中,中,a1+2a2+3a3+nan=3n+1,求通项求通项an解解:a1+2a2+3a3+nan=3n+1 (n1)注意注意n的范围的范围 a1+2a2+3a3+(n1)an1=3n(n2)nan=3n+13n=23n23nnan=而而n=1时时,a1=9(n2)两式相减得:两式相减得:an=9 (n=1)23nn
3、(n2,)本讲稿第五页,共三十五页类型类型1本讲稿第六页,共三十五页类型类型1求法:累加法求法:累加法本讲稿第七页,共三十五页类型类型1求法:累加法求法:累加法例例1本讲稿第八页,共三十五页3.已知已知an中中,an+1=an+n (nN*),a1=1,求通项求通项an解解:由由an+1=an+n (nN*)得得a2 a1 =1a3 a2 =2a4 a3 =3anan1=n 1an=(anan1)+(an1an2)+(a2 a1)+a1 =(n 1)+(n 2)2)+2+1+1 演练:累加法演练:累加法(递推公式形如形如an+1=an+f(n)型型的数列)n个等式相加得a1 =1 4.已知已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 公式 精选 文档
限制150内