高一数学二次函数在闭区间上的最值练习题.docx
《高一数学二次函数在闭区间上的最值练习题.docx》由会员分享,可在线阅读,更多相关《高一数学二次函数在闭区间上的最值练习题.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学二次函数在闭区间上的最值练习题第1课二次函数在闭区间上的最值一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设)0()(2+=acbxaxxf,求)(xf在nmx,上的最大值与最小值。分析:将)(xf配方,得顶点为?-abacab4422,、对称轴为abx2-=当0a时,它的图象是开口向上的抛物线,数形结合可得在m,n上)(xf的最值:1当nmab,-2时,)(xf的最小值是abacabf4422-=?-,)(xf的最大值是)()(nfmf、中的较大者。2当),(2mab-时,)(xf在nm,上是增函数则)(
2、xf的最小值是)(mf,最大值是)(nf3当),(2+-nab时,)(xf在nm,上是减函数则)(xf的最大值是)(mf,最小值是)(nf当0一、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的互相位置关系的讨论往往成为解决这类问题的关键。此类问题包括下面四种情形:1轴定,区间定;2轴定,区间变;3轴变,区间定;4轴变,区间变。1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值。例1.函数242-+-=xxy在区间0,3上的最大值是_,最小值是_。练习.已知xx322,求函数1)(2+=xxxf的最值。2、轴定区间变二次函
3、数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值。例2.假如函数fxx()()=-+112定义在区间tt,+1上,求fx()的最小值。典型例题基础过关例3.已知32) (2+-=xxxf,当1,+ttx,()Rt时,求)(xf的最大值观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细考虑就很容易解决。不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;
4、而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。根据这个理解,不难解释第二个例题为什么这样讨论。对二次函数的区间最值结合函数图象总结如下:当a0时?+-=)(2)()(2)2()(2)()(543min如图如图如图,mabmfnabmabfnabnfxf当0-=)(2)()(2)2()(2)()(876max如图如图如图,mabmfnabmabfnabnfxffxfmbamnfnbamn()()()()()()()min=-+-a,求()223yxu+-=的最小值。二、逆向型是指已知二次函数
5、在某区间上的最值,求函数或区间中参数的取值。例7.已知函数2()21fxaxax=+在区间3,2-上的最大值为4,务实数a的值。例8.已知函数2()2xfxx=-+在区间,mn上的最小值是3m最大值是3n,求m,n的值。评注:解法利用闭区间上的最值不超过整个定义域上的最值,缩小了m,n的取值范围,避开了繁难的分类讨论,解题经过简洁、明了。例9.已知二次函数2f(x)ax(2a1)x1=+-+在区间?-2,23上的最大值为3,务实数a的值。解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点
6、处获得,不妨令之为最值,验证参数的资格,进行取舍,进而避开繁难的分类讨论,使解题经过简洁、明了。12+x在1,1-上的最小值和最大值分别是)(A1,3)(B43,3C21-,3D41-,32函数242-+-=xxy在区间4,1上的最小值是)(A7-)(B4-)(C2-)(D23函数5482+-=xxy的最值为)(A最大值为8,最小值为0)(B不存在最小值,最大值为8C最小值为0,不存在最大值)(D不存在最小值,也不存在最大值4若函数4,0,422+-=xxxy的取值范围是_5已知函数fxaxaxa()()()=+-22130322在区间,上的最大值是1,则实数a的值为6假如实数yx,知足122
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二次 函数 区间 练习题
限制150内