中考数学第三轮冲刺:二次函数 解答题专题复习 .docx
《中考数学第三轮冲刺:二次函数 解答题专题复习 .docx》由会员分享,可在线阅读,更多相关《中考数学第三轮冲刺:二次函数 解答题专题复习 .docx(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年中考数学第三轮冲刺:二次函数 解答题专题复习1、已知二次函数yax2bx+c且ab,若一次函数ykx+4与二次函数的图象交于点A(2,0)(1)写出一次函数的解析式,并求出二次函数与x轴交点坐标;(2)当ac时,求证:直线ykx+4与抛物线yax2bx+c一定还有另一个异于点A的交点;(3)当cac+3时,求出直线ykx+4与抛物线yax2bx+c的另一个交点B的坐标;记抛物线顶点为M,抛物线对称轴与直线ykx+4的交点为N,设SSAMNSBMN,写出S关于a的函数,并判断S是否有最大值?如果有,求出最大值;如果没有,请说明理由2、如图,已知抛物线yax2+bx+5经过A(5,0),
2、B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由3、如图抛物线经yax2+bx+c过点A(1,0),点C(0,3),且OBOC(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x1上的两个动点,且DE1,点D在点E的上方,求四边形ACDE的周长的最小值(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐
3、标4、已知抛物线yax2+bx+3与x轴分别交于A(3,0),B(1,0)两点,与y轴交于点 C(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点如图1,设k,当k为何值时,CFAD?如图2,以A,F,O为顶点的三角形是否与ABC相似?若相似,求出点F的坐标;若不相似,请说明理由5、已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当SCPD:SBPD1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一
4、点,OGE15,连接PE,若PEG2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由6、如图,在直角坐标系中有RtAOB,O为坐标原点,OB1,tanABO3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数yx2+bx+c的图象刚好经过A,B,C三点(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:ykxk+3与二次函数图象相交于M,N两点若SPMN2,求k的值;证明:无论k为何值,PMN恒为直角三角形;当直线l绕着定点Q旋转时,PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式
5、7、已知抛物线ya(x2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且DEFA,则DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且m,试确定满足条件的点P的个数8、如图,抛物线yax2+bx+4交x轴于A(3,0),B(4,0)两点,与y轴交于点C,连接AC,BC点P是第一象限内抛物线上的一个动点,点P的横坐标为m(1)求此抛物线的表达式;(2)过点P作PMx轴,垂足为点M,PM交BC于点Q试探究点P在运动过程中,是否存在
6、这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PNBC,垂足为点N请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?9、如图,已知A的圆心为点(3,0),抛物线yax2x+c过点A,与A交于B、C两点,连接AB、AC,且ABAC,B、C两点的纵坐标分别是2、1(1)请直接写出点B的坐标,并求a、c的值;(2)直线ykx+1经过点B,与x轴交于点D点E(与点D不重合)在该直线上,且ADAE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线yk1x1与A相切,请直接写出满足此条件的直线解析
7、式10、已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当SCPD:SBPD1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一点,OGE15,连接PE,若PEG2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由11、如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线如图1
8、,已知抛物线C1:y1x2+x与C2:y2ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,1)(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记AFM面积为S1(当点M与点A,F重合时S10),ABN的面积为S2(当点N与点A,B重合时,S20),令SS1+S2,观察图象,当y1y2时,写出x的取值范围,并求出在此范围内S的最大值
9、12、在平面直角坐标系中,将二次函数yax2(a0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA1,经过点A的一次函数ykx+b(k0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,ABD的面积为5(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值13、如图,已知抛物线yax2+bx+c经过点A(3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直
10、于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点(1)求出该二次函数的表达式及点D的坐标;(2)若RtAOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到RtA1O1F,求此时RtA1O1F与矩形OCDE重叠部分图形的面积;(3)若RtAOC沿x轴向右平移t个单位长度(0t6)得到RtA2O2C2,RtA2O2C2与RtOED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围14、综合与探究如图,抛物线yx2+bx+c与x轴交于A、B两点,与y轴交于C点,OA2,OC6,连接AC和BC(1)求抛物线的解析式;(2
11、)点D在抛物线的对称轴上,当ACD的周长最小时,点D的坐标为(3)点E是第四象限内抛物线上的动点,连接CE和BE求BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由参考答案2021年中考数学第三轮冲刺:二次函数 解答题专题复习1、已知二次函数yax2bx+c且ab,若一次函数ykx+4与二次函数的图象交于点A(2,0)(1)写出一次函数的解析式,并求出二次函数与x轴交点坐标;(2)当ac时,求证:直线ykx+4与抛物线yax2bx+c一定还有另一个异于点A的交点;
12、(3)当cac+3时,求出直线ykx+4与抛物线yax2bx+c的另一个交点B的坐标;记抛物线顶点为M,抛物线对称轴与直线ykx+4的交点为N,设SSAMNSBMN,写出S关于a的函数,并判断S是否有最大值?如果有,求出最大值;如果没有,请说明理由【解答】解:(1)把点A(2,0)代入ykx+4得:2k+40k2一次函数的解析式为y2x+4二次函数yax2bx+c的图象过点A(2,0),且ab4a2a+c0解得:c2a二次函数解析式为yax2ax2a(a0)当ax2ax2a0,解得:x12,x21二次函数与x轴交点坐标为(2,0),(1,0)(2)证明:由(1)得:直线解析式为y2x+4,抛物
13、线解析式为yax2ax2a整理得:ax2+(2a)x2a40(2a)24a(2a4)a24a+4+8a2+16a9a2+12a+4(3a+2)2ac,c2aa2aa03a+20(3a+2)20关于x的一元二次方程有两个不相等的实数根直线与抛物线还有另一个异于点A的交点(3)cac+3,c2a2aa2a+30a1,抛物线开口向上 整理得:ax2+(2a)x2a40,且(3a+2)20xx12(即点A横坐标),x21y22(1)+4+6直线ykx+4与抛物线yax2bx+c的另一个交点B的坐标为(1,)抛物线yax2ax2aa(x)2a顶点M(,a),对称轴为直线x抛物线对称轴与直线y2x+4的交
14、点N(,3)如图,MN3(a)3+aSSAMNSBMNMN(xA)MN(xB)(3+a)(2)(3+a)(+1+)(3+a)()3a+0a103a3,3当a1时,3a3,3均取得最大值S3a+有最大值,最大值为2、如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由【解答】解:(1)将点A、B坐标代入
15、二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCPG(xCxB)(t+1t26t5)t2t6,0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达
16、式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)3、如图抛物线经yax2+bx+c过点A(1,0),点C(0,3),且OBOC(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x1上的两个动点,且DE1,点D在点E的上方,求四边形ACDE的
17、周长的最小值(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标【解答】解:(1)OBOC,点B(3,0),则抛物线的表达式为:ya(x+1)(x3)a(x22x3)ax22ax3a,故3a3,解得:a1,故抛物线的表达式为:yx2+2x+3;(2)ACDE的周长AC+DE+CD+AE,其中AC、DE1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CDCD,取点A(1,1),则ADAE,故:CD+AEAD+DC,则当A、D、C三点共线时,CD+AEAD+DC最小,周长也最小,四边形ACDE的周长的最小值AC+DE+CD+A
18、E+AD+DC+AC+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又SPCB:SPCAEB(yCyP):AE(yCyP)BE:AE,则BE:AE,3:5或5:3,则AE或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:ykx+3,解得:k6或2,故直线CP的表达式为:y2x+3或y6x+3联立并解得:x4或8(不合题意值已舍去),故点P的坐标为(4,5)或(8,45)4、已知抛物线yax2+bx+3与x轴分别交于A(3,0),B(1,0)两点,与y轴交于点 C(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点
19、如图1,设k,当k为何值时,CFAD?如图2,以A,F,O为顶点的三角形是否与ABC相似?若相似,求出点F的坐标;若不相似,请说明理由【解答】解:(1)抛物线yax2+bx+3过点A(3,0),B(1,0),解得:,抛物线解析式为yx22x+3;yx22x+3(x+1)2+4顶点D的坐标为(1,4);(2)在RtAOC中,OA3,OC3,AC2OA2+OC218,D(1,4),C(0,3),A(3,0),CD212+122AD222+4220AC2+CD2AD2ACD为直角三角形,且ACD90,F为AD的中点,在RtACD中,tan,在RtOBC中,tan,ACDOCB,OAOC,OACOCA
20、45,FAOACB,若以A,F,O为顶点的三角形与ABC相似,则可分两种情况考虑:当AOFABC时,AOFCBA,OFBC,设直线BC的解析式为ykx+b,解得:,直线BC的解析式为y3x+3,直线OF的解析式为y3x,设直线AD的解析式为ymx+n,解得:,直线AD的解析式为y2x+6,解得:,F()当AOFCAB45时,AOFCAB,CAB45,OFAC,直线OF的解析式为yx,解得:,F(2,2)综合以上可得F点的坐标为()或(2,2)5、已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为yx22x+3,抛
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学精品资料 中考数学精品专题 初中数学专题讲义 初中数学教学课件 初中数学学案 初中数学试卷 中考数学解题指导
限制150内