《繁凡的论文精读》(一)CVPR 2019 基于决策的高效人脸识别黑盒对抗攻击(清华朱军)-精品文档资料整理.docx
《《繁凡的论文精读》(一)CVPR 2019 基于决策的高效人脸识别黑盒对抗攻击(清华朱军)-精品文档资料整理.docx》由会员分享,可在线阅读,更多相关《《繁凡的论文精读》(一)CVPR 2019 基于决策的高效人脸识别黑盒对抗攻击(清华朱军)-精品文档资料整理.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、繁凡的论文精读(一)CVPR 2019 基于决策的高效人脸识别黑盒对抗攻击(清华朱军)图6。对真实世界人脸验证API的模拟攻击的例子。我们展示了原始图像对和由每种方法产生的对抗图像。 5. Conclusion 在本文中 我们提出了一种进化攻击算法 用于在基于决策的黑盒环境中生成对抗实例。我们的方法通过对搜索方向的部分几何形状进展建模 同时降低搜索空间的维数 进而进步了效率。我们应用提出的方法综合研究了几种先进的人脸识别模型的鲁棒性 并与其他方法进展了比拟。大量实验证明了该方法的有效性。我们说明 现有的人脸识别模型极易受到黑盒方式的攻击 这为开发更鲁棒的人脸识别模型提出了平安问题。最后 利用该
2、方法攻击了一个真实世界的人脸识别系统 验证了其实用性。 References 1 W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In ICLR, 2018. 2, 5, 6, 8 2 N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE Symposium
3、 on Security and Privacy, 2017. 2 3 P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Articial Intelligence and Security, pages 1526. A
4、CM, 2017. 2, 3, 5 4 M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh. Query-efcient hard-label black-box attack: An optimization-based approach. arXiv preprint arXiv:1807.04457, 2018. 2, 3, 5, 6, 8 5 J. Deng, J. Guo, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face
5、recognition. arXiv preprint arXiv:1801.07698, 2018. 1, 2, 5, 6, 7 6 Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial attacks with momentum. In CVPR, 2018. 1, 2 7 A. D. Flaxman, A. T. Kalai, and H. B. Mcmahan. Online convex optimization in the bandit setting:gradient d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 繁凡的论文精读 繁凡的论文精读一CVPR 2019 基于决策的高效人脸识别黑盒对抗攻击清华朱军-精品文档资料整理 论文 精读 CVPR 基于 决策 高效 识别 黑盒 对抗 攻击 清华 精品
链接地址:https://www.taowenge.com/p-71085903.html
限制150内