2023年常用高考数学必考知识点笔记.docx
《2023年常用高考数学必考知识点笔记.docx》由会员分享,可在线阅读,更多相关《2023年常用高考数学必考知识点笔记.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年常用高考数学必考知识点笔记 在学习中,大家应当都不生疏的就是学问点吧!学问点就是“让别人看完能理解”或者“通过练习我能驾驭”的内容。下面我为大家带来高考数学必考学问点笔记,希望对您有所帮助! 高考数学必考学问点笔记 一、集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进行求解。 2.在应用条件时,易A忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区分。 6.求解与函数有关的问题易忽视定义域优先
2、的原则。 7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称。 8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域。 9.原函数在区间-a,a上单调递增,则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调。例如:。 10.你娴熟地驾驭了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法 11. 求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示。 12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问
3、题).这几种基本应用你驾驭了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需探讨 15.三个二次(哪三个二次?)的关系及应用驾驭了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 二、不等式 1.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”. 2.肯定值不等式的解法及其几何意义是什么? 3.解分
4、式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么? 4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类探讨是关键”,留意解完之后要写上:“综上,原不等式的解集是”. 5. 在求不等式的解集、定义域及值域时,其结果肯定要用集合或区间表示;不能用不等式表示。 6. 两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即a>b>0,a 三、数列 1.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进行探讨了吗? 2.在“已知,求”的问题中,你在利用公式时留意到了吗?(时,应有)须要验证,有些题目通项是分段函数
5、。 3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在? 4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特别函数,但其定义域中的值不是连续的。) 5.应用数学归纳法一要留意步骤齐全,二要留意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 四、三角函数 1.正角、负角、零角、象限角的概念你清晰吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区分吗? 2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知
6、道吗? 3. 在解三角问题时,你留意到正切函数、余切函数的定义域了吗?你留意到正弦函数、余弦函数的有界性了吗? 4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特别角。 异角化同角,异名化同名,高次化低次) 5. 反正弦、反余弦、反正切函数的取值范围分别是 6.你还记得某些特别角的三角函数值吗? 7.驾驭正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简洁的三角不等式的解集吗?(要留意数形结合与书写规范,可别忘了),你是否清晰函数的图象可以由函数经过怎样的变换得到吗? 五、平面对量 1.数0有区分,的模为数0,它不是没有方向,而是方向不定。
7、可以看成与随意向量平行,但与随意向量都不垂直。 2.数量积与两个实数乘积的区分: 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。 已知实数,且,则a=c,但在向量的数量积中没有。 在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。 3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。 六、解析几何 1.在用点斜式、斜截式求直线的方程时,你是否留意到不存在的状况? 2.用到角公式时,易将直线l1、l2的斜率k1、k2的依次弄颠倒。 3.直线的倾斜角、到的角、与的夹角的取值范围依次是。 4. 定比分点的坐标公式
8、是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你留意到了吗? 5. 对不重合的两条直线 (建议在解题时,探讨后利用斜率和截距) 6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要遗忘当时,直线在两坐标轴上的截距都是0,亦为截距相等。 7.解决线性规划问题的基本步骤是什么?请你留意解题格式和完整的文字表达。(设出变量,写出目标函数写出线性约束条件画出可行域作出目标函数对应的系列平行线,找到并求出最优解应用题肯定要有答。) 8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你驾驭了吗? 9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 常用 高考 数学 必考 知识点 笔记
限制150内